
Principles of
Protocol Design

Robin Sharp

Principles of Protocol Design

Robin Sharp

Principles of Protocol Design

ABC

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfi lm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable for prosecution under the German Copyright Law.

Printed on acid-free paper

springer.com

 Robin Sharp

Informatics & Mathematical Modelling

ISBN: 978-3-540-77540-9 e-ISBN: 978-3-540-77541-6

Library of Congress Control Number: 2007943145

© 2008 Springer-Verlag Berlin Heidelberg

Mathematics Subject Classification (2000): C.2.2, C.2.4

Technical University of Denmark

Denmark

Richard Petersens Plads Bldg. 321
2800 Kongens Lyngby

Cover design: KünkelLopka

9 8 7 6 5 4 3 2 1

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Preface

This book introduces the reader to the principles used in the construction of a large
range of modern data communication protocols. The approach we take is rather
a formal one, primarily based on descriptions of protocols in the notation of CSP.
This not only enables us to describe protocols in a concise manner, but also to reason
about many of their interesting properties and formally to prove certain aspects of
their correctness with respect to appropriate specifications. Only after considering
the main principles do we go on to consider actual protocols where these principles
are exploited.

This is a completely new edition of a book which was first published in 1994,
where the main focus of many international efforts to develop data communication
systems was on OSI – Open Systems Interconnection – the standardised architec-
ture for communication systems developed within the International Organisation for
Standardization, ISO. In the intervening 13 years, many of the specific protocols de-
veloped as part of the OSI initiative have fallen into disuse. However, the terms and
concepts introduced in the OSI Reference Model are still essential for a systematic
and consistent analysis of data communication systems, and OSI terms are therefore
used throughout.

There are three significant changes in this second edition of the book which par-
ticularly reflect recent developments in computer networks and distributed systems.
Firstly, the rise of the Internet has led to the development of large numbers of new
protocols, particularly in the Application Layer, and a new chapter has been in-
troduced focussing on some of the most important of these. These new protocols
typically use new styles of encoding, particularly ASCII encodings such as MIME
and XML, and rely on middleware solutions based on a variety of support protocols.
Chapters 8 and 10 have therefore been extended to deal with these topics. Finally,
there is today much more focus on security issues in networks. Chapter 6, which
deals with the general concepts of security, has been heavily revised and brought
up to date, while Chapters 8, 9, 10 and 11 now include sections discussing specific
technologies such as IPsec, SSL/TLS, and secure protocols for e-mail and web-
based applications.

v

vi Preface

The book has arisen from material used for teaching a course on Distributed Sys-
tems at the Technical University of Denmark. The exercises at the ends of Chapters
2 to 8 also originate in this course, either as weekly assignments or, in some cases,
as examination questions. I hope you find them as interesting—and maybe even as
challenging—as my students have done.

This text was originally written for third or fourth year students in Computer
Science or Electrical Engineering, and is intended to be suitable for most final-year
undergraduate or postgraduate courses on advanced data communications or com-
puter networks. The reader is expected to have a software background, in particular
including a basic knowledge of functional programming and parallel programming,
combined with some knowledge of computer systems architecture and data trans-
mission. Knowledge of formal methods, for example based on languages such as
VDM or Z, is not essential, but to get the most out of the book you should know
about the sort of discrete mathematics which is used in computer science, and be
aware of the basic concepts of mathematical proof.

Many people deserve thanks for helping me in the task of preparing this text,
and especially for reading and commenting on the various drafts which have seen
the light of day. I would particularly like to thank my colleagues Hans-Henrik
Løvengreen of this department, Arne Skou of Aalborg University, Klaus Hansen
of the University of Copenhagen and Henrik Reif Andersen of the IT University in
Copenhagen for their comments on important parts of the text. I also owe a great
debt of thanks to my many students, who have been exposed to several provisional
versions of this book, a fate which they have borne stoically. Their help in finding
errors and pointing out the shakier parts of the presentation, where the arguments
were weakest or the explanations most difficult to follow, has been invaluable.

Finally, I would like to thank my wife Lisbeth and daughter Melissa for contin-
uing to be so tolerant about having an author in the house. The competition for the
PC at home has at times been intense – and they have been really sweet about letting
me win. . . .

Technical University of Denmark, Robin Sharp
October 2007.

Contents

1 Introduction . 1
1.1 What is a Protocol? . 1
1.2 Protocols as Processes . 3
1.3 Techniques for Actual Protocols . 4
1.4 Real Protocols . 4
1.5 Reader’s Guide . 5

2 CSP Descriptions and Proof Rules . 7
2.1 Processes and Process Synchronisation . 8

2.1.1 Process Expressions . 9
2.1.2 Process Algebra . 13
2.1.3 Process Expressions for Process Networks 20

2.2 Channel History Semantics . 26
2.2.1 Transitions and Traces . 26
2.2.2 Inference Rules for Specifications Based on Traces 29

2.3 Failure Semantics . 35

3 Protocols and Services . 45
3.1 Providing a Service . 48

3.1.1 Proving the Protocol Correct . 50
3.1.2 Structuring your Proof . 54

3.2 Service Features . 55
3.2.1 Sequence Preservation . 56
3.2.2 Data Unit Synchronisation . 56
3.2.3 Flow Control . 56
3.2.4 Freedom from Error . 57
3.2.5 Service Reset . 58
3.2.6 Connection Establishment and Release 58
3.2.7 Change of Mode . 60
3.2.8 Information about Peer Change of State 62
3.2.9 Expedited Data . 63

vii

viii Contents

3.2.10 Security . 63
3.3 OSI and Other Layered Architectures . 64

3.3.1 The Internet and Other Layered Architectures 66

4 Basic Protocol Mechanisms . 71
4.1 Sequence Control and Error Control . 73

4.1.1 Corruption Control . 73
4.1.2 Simple ACK/NACK protocols . 76
4.1.3 Simple Polling Protocols . 77
4.1.4 ACK/NACK Protocols with Timeout . 78
4.1.5 The Alternating Bit Protocol . 80
4.1.6 The Case of the Floating Corpses . 82

4.2 Flow Control . 87
4.2.1 Fixed Window Protocols . 88
4.2.2 Protocols with Receive Window Size 1 89
4.2.3 Protocols with Receive Window Size Greater than 1 92
4.2.4 Dynamic Window Systems and the Concept of Credit 93

4.3 Indication of Change of Peer State . 94
4.3.1 Two-way Exchanges . 94
4.3.2 Atomic Two-way Exchanges . 96
4.3.3 Exchanges in the Presence of Errors . 97

4.4 Change of Service Mode . 100
4.4.1 Connection-mode and Connectionless-mode 100
4.4.2 Point-to-point and Multi-peer . 101
4.4.3 Simplex and Duplex . 101

4.5 Multiplexing and Splitting . 102
4.5.1 Multiplexing . 102
4.5.2 Splitting . 110

4.6 Segmentation and Reassembly . 112
4.7 Prioritisation . 116

5 Multi-peer Consensus . 121
5.1 Reliable Broadcasts . 122
5.2 Election . 126
5.3 Commitment . 129
5.4 Byzantine Agreement . 135

5.4.1 Using unsigned messages . 136
5.4.2 Using signed messages . 138
5.4.3 Other forms of Byzantine agreement . 140

5.5 Clock Synchronisation . 141
5.5.1 Logical Clocks . 142
5.5.2 Real time clocks . 144
5.5.3 Byzantine Clock Synchronisation . 146

5.6 Finding the Global State . 148

Contents ix

6 Security . 155
6.1 Cryptographic Methods . 155

6.1.1 Encipherment . 156
6.1.2 Secret Key Cryptosystems . 157
6.1.3 Public Key Cryptosystems . 160

6.2 Integrity . 164
6.3 Digital Signatures . 167
6.4 Entity Authentication . 170

6.4.1 Authentication with Secret Key Cryptosystems 171
6.4.2 Authentication with Public Key Cryptosystems 173
6.4.3 Proofs of Authentication Protocols . 175
6.4.4 Certification Authorities . 181

6.5 Key Exchange . 184
6.6 Non-cryptographic Methods . 186

7 Naming, Addressing and Routing . 191
7.1 General Principles of Naming and Addressing 191

7.1.1 Naming Strategies in the Upper Layers of the System 194
7.1.2 Directories and Servers . 197
7.1.3 Distributed Directories . 199
7.1.4 Internet Naming and the Internet DNS. 203

7.2 Addressing Structures . 207
7.2.1 OSI Addressing . 209
7.2.2 Internet addressing . 210
7.2.3 MOTIS/MHS Addressing . 214

7.3 Routing . 215
7.3.1 Flooding . 216
7.3.2 Static Routing . 217
7.3.3 Tree Routing . 218
7.3.4 Centralised Adaptive Routing . 219
7.3.5 Isolated Adaptive Routing . 221
7.3.6 Distributed Adaptive Routing . 223
7.3.7 Exploratory Routing . 226

7.4 Congestion . 229
7.4.1 Discarding . 231
7.4.2 Limiting the Number of PDUs . 232
7.4.3 Timeout-based control . 232
7.4.4 Explicit feedback . 235
7.4.5 Deadlock . 236

8 Protocol Encoding . 241
8.1 Simple Binary Encoding . 242
8.2 TLV Encoding . 244
8.3 ASN.1 Encoding . 246

8.3.1 ASN.1 Types . 246

x Contents

8.3.2 ASN.1 Values . 248
8.3.3 ASN.1 Encoding Rules . 248

8.4 ASCII encodings . 251
8.4.1 MIME encoding . 252
8.4.2 S/MIME encoding . 255
8.4.3 XML encoding . 257
8.4.4 XML types . 263
8.4.5 XML Security . 269

9 Protocols in the OSI Lower Layers . 275
9.1 Data Link Layer . 276

9.1.1 Connection-mode . 276
9.1.2 Connectionless-mode . 278

9.2 Network Layer . 280
9.2.1 Connection-mode . 280
9.2.2 Connectionless-mode . 281
9.2.3 Network Layer Security . 282

9.3 Transport Layer . 284
9.3.1 Connection-mode . 284
9.3.2 Connectionless-mode . 288

10 Application Support Protocols . 291
10.1 Session Layer . 291
10.2 Presentation Layer . 295
10.3 Application Layer . 297
10.4 Basic Application Service Elements . 298

10.4.1 Association Control . 298
10.4.2 Remote Operations . 299

10.5 Commitment, Concurrency and Recovery . 301
10.6 Client-server Systems . 303

10.6.1 Remote Procedure Call . 304
10.6.2 Binding . 307
10.6.3 Asynchronous RPC . 307
10.6.4 Object Services and Middleware . 309
10.6.5 SOAP . 311

10.7 Security Middleware . 316

11 Application Protocols . 321
11.1 File Transfer . 322

11.1.1 ISO File Transfer and Management . 322
11.1.2 Internet FTP . 326
11.1.3 Network File System . 328

11.2 Distributed Transaction Processing . 329
11.3 Message Handling . 332

11.3.1 The MOTIS Message Transfer Sub-layer 333

Contents xi

11.3.2 The MOTIS Interpersonal Messaging Service 335
11.3.3 Internet Mail Protocols . 337

11.4 Hypertext and the World Wide Web . 340
11.4.1 Uniform Resource Identifiers . 340
11.4.2 Hypertext Transfer Protocols . 342
11.4.3 Web Caching . 346
11.4.4 HTTP Authentication . 350
11.4.5 Stateful HTTP and Cookies . 352
11.4.6 Secure HTTP . 354

11.5 Web Services . 356
11.5.1 Web Service Description Language . 358
11.5.2 Publication and Discovery of Web services 361
11.5.3 Web Service Architectures . 363

A Notation . 367
A.1 Data Types and Variables . 367
A.2 Data Values and Expressions . 367
A.3 Processes and Process Expressions . 368
A.4 Traces, Failures and Transitions . 369
A.5 Inference Rules for Process Specifications . 369
A.6 Security . 369

B Standardisation of Protocols . 371
B.1 Standards Organisations . 371
B.2 Standards Documents . 372

B.2.1 ISO standards . 372
B.2.2 ITU-T recommendations . 373
B.2.3 Internet standards . 374

References . 377

Index . 389

Chapter 1
Introduction

Then a minstrel and loremaster stood up and named all the names of the
Lords of the Mark in their order. . . . And when Théoden was named, Éomer
drained the cup. Then Éowen bade those that served to fill the cups, and
all there assembled rose and drank to the new king, crying: ‘Hail, Éomer,
King of the Mark!’ ”

“The Return of the King”
J. R. R. Tolkien.

A protocol is a set of rules which have to be followed in the course of some ac-
tivity. Originally, the term was used solely of human activities, especially those of
a somewhat formal kind, such as the state funeral for King Théoden described in
the quotation at the start of this chapter. The chef de protocole for a Head of State
sets formal rules for how activities take place according to the niceties of diplomatic
practice. But protocols must also be followed in less elevated spheres, such as games
of all kinds, the way in which conversations are conducted, and in fact all activities
which are governed by custom and convention. If the protocol is not followed, the
activity will not be successful.

In this book we shall consider communication protocols, and in particular those
which regulate communication between computers. The characteristics of protocols
mentioned above are equally evident in this case: A set of formal rules governs the
exchange of information, and the communication activity fails if the protocol is not
correctly followed.

1.1 What is a Protocol?

In the general sense, communication between computers takes place by the ex-
change of data – information encoded in some way which depends on the system
concerned. We can consider this exchange as taking place in discrete steps, which
we shall call elementary communications, in each of which a message is transferred.
Again depending on the system, a message may be a single electronic signal, or a

1

2 1 Introduction

Fig. 1.1 Exchange of mes-
sages in a simple protocol.

�����������

�����������

�����������

�����������

.

.

.

.

.

.

.

.

.

.

������������

Sender Receiver

larger amount of data. For generality, we shall use the term the type of the message
to cover both the general content and the detailed encoding.

A common definition of a communication protocol [133] is thus that it is a set of
rules for the order in which messages of particular types are exchanged. With our
definition of message type, this also implies a set of rules for the encoding of the
various types of message.

The exchange of data may take place between two or more parties. When there
are N parties to the exchange, we shall talk of N-peer communication, and speak of
the protocol as an N-peer protocol.

For each of the N parties to an N-peer communication, the protocol defines a
language, whose sentences are the legal sequences of messages received by that
party, and whose alphabet of symbols is the set of all possible messages. A machine
to obey the rules of the protocol must thus essentially be a recogniser for the pro-
tocol language. For simple protocols, this is a useful abstraction, as the language
is regular or at most context-free, and standard compiler techniques [124] can be
used to implement the machine as a finite state machine or push-down automaton
respectively.

A trivial example of a simple protocol described in this way is given below. It is a
type of stop-and-wait protocol. The sender requests the receiver to indicate when it
is ready to receive data, and waits for this indication. On receipt of the indication, the
sender sends the data and waits for an acknowledgment. The exchange of messages
is as shown in Figure 1.1. The languages to be recognised by the sender and receiver

1.2 Protocols as Processes 3

respectively (and of course to be generated by the receiver and sender respectively)
are defined by the BNF:

sender ::= readyindication acknowledge sender
receiver ::= requesttoaccept data receiver

Each party must generate and recognise sentences of a regular language. This is a
simple task for a finite state machine.

Unfortunately, there are some important objections to this language-oriented
view of a protocol. The first is a practical objection: Simple languages generally
do not correspond to protocols which can tolerate faults, such as missing or du-
plicated messages. Protocols which are fault-tolerant often require the use of state
machines with enormous numbers of states, or they may define context-dependent
languages.

A more radical objection is that classical analysis of the protocol language from
a formal language point of view traditionally concerns itself with the problems of
constructing a suitable recogniser, determining the internal states of the recogniser,
and so on. This does not help us to analyse or check many of the properties which we
may require the protocol to have, such as the properties of fault-tolerance mentioned
above. To be able to investigate this we need analytical tools which can describe the
parallel operation of all the parties which use the protocol to regulate their commu-
nication.

1.2 Protocols as Processes

A radically different way of looking at things has therefore gained prominence
within recent years. This involves considering the protocol as being defined, not
so much by the internal states of the protocol machine, but rather by the observ-
able external behaviour of a process. The external behaviour is defined as the set of
all possible traces – sequences of elementary communications in which the process
takes part. The work of Hoare, Milner and others ([64], [128], [19], [94]) has shown
how the behaviour of combinations of processes can be deduced from the behaviours
of the individual component processes through the use of a calculus or algebra, and
how it is possible to prove properties of processes starting from certain axioms about
the behaviours of their component parts. Chapter 2 gives a short introduction to the
method used in this book and the required notation.

This type of approach makes it possible to specify and analyse complex proto-
cols. In particular, the rules for the composition of processes make it possible to
analyse protocols which rely on the the use of other protocols in some layered man-
ner, as is commonly the case in communication systems. A well-known example
of this is seen in the OSI standard architecture for communication systems [133].
Some simple illustrations of the approach and an introduction to the OSI Reference

4 1 Introduction

Model will be given in the Chapter 3, where we also consider the general properties
which might be desirable for services in distributed systems.

1.3 Techniques for Actual Protocols

The central chapters of the book are devoted to a presentation of techniques for
providing particular types of service by the use of appropriate protocols. This pre-
sentation is illustrated by theoretical analysis of some of the protocol techniques,
and by a classification of some protocols used in practice today, according to the
techniques on which they are based.

The presentation falls into four parts. In Chapter 4 we discuss a number of basic
mechanisms for use in 2-peer point-to-point communication protocols, and the rela-
tion of these mechanisms to required properties of the service, particularly resilience
to simple faults such as corruption or loss of messages.

Chapter 5 considers the problems associated with providing a service to more
than two parties, and in particular the problem of getting several parties to agree
in the presence of faults. Here we shall extend our repertoire of permitted faults to
include arbitrary, possibly malicious faults – the so-called Byzantine errors.

In Chapter 6 we turn our attention to another form of malicious attack to which
distributed systems are exposed – attempts by unauthorised persons to read or alter
information to which they are not supposed to have access. This is the problem of
computer security, whose solution, as we shall see, requires special protocols and a
careful use of cryptographic methods.

Finally, in Chapter 7 we consider what techniques are available for locating an
intended participant within a distributed system, and for organising transmission of
messages so that they reach the recipient reliably and with a minimum of delay.
This is the problem of naming, addressing and routing, which is interesting not only
because it is a real, practical problem to be solved, but also because the solutions
illustrate many of the strategic choices to be taken when decisions have to be made
in distributed systems.

1.4 Real Protocols

After considering in a rather abstract manner the techniques available for construct-
ing protocols with particular properties, the final chapters of the book will be de-
voted to looking at a selection of real protocols, and to analysing how the general
techniques are deployed in them.

We start this part of the book by looking, in Chapter 8, at principles used for en-
coding the messages used in protocols. Then we go on to look at each of the layers
of the OSI Reference Model in turn, presenting commonly used protocols, many
of them internationally standardised, and classifying them according to the type of

1.5 Reader’s Guide 5

service which they support and the protocol mechanisms used in order to supply this
service. Chapter 9 deals with the so-called OSI Lower Layers, which are the layers
up to and including the Transport layer. Chapter 10 describes protocols in the OSI
Upper Layers – the Session, Presentation and Application layers of the Reference
Model – which provide general support for applications. And finally, Chapter 11
presents a number of important protocols associated with specific applications, in-
cluding file transfer, mail transfer, transaction processing, document access via the
World Wide Web and Web services.

This book is not a catalogue of standards, and many protocols of potential in-
terest, particularly in the Application layer, have had to be left out. Even so, the
bibliography at the end of the book contains references to more than 130 national
and international standards, chosen because they illustrate interesting principles of
design. On the other hand, we do not discuss any of the multitude of commercially
available protocols from specific suppliers, nor do we enter into detailed presenta-
tions of particular protocols. For this kind of specific information, you will need to
read the original descriptions of the protocols concerned.

1.5 Reader’s Guide

This book deals with both theory and practice, and some readers may prefer to omit
one or other of these subjects on the first reading. If you prefer to omit as much
theory as possible, you can skip Sections:

• 2.1.2, which deals with process algebra,
• 2.2 and 2.3, which deal with the logic used to prove properties of systems of

processes,
• 3.1, which gives an example of a proof that a protocol enjoys a particular prop-

erty,
• 6.4.3, which deals with the logic used to prove the correctness of authentication

protocols.

If on the other hand you prefer to think about the theory and are not much concerned
with practice, then you can skip:

• Chapter 8, which deals with encoding of protocols, and
• Chapters 9, 10 and 11, which deal with real protocols used in the various layers

of the OSI Reference Model.

Chapter 2
CSP Descriptions and Proof Rules

“There must be a mutual cooperating for the
good of the whole.”

“De Jure Regni”
in Buchanan’s translation, 1689

In this book we shall describe protocols as systems of interacting processes, and
we shall describe processes in a notation which, apart from minor deviations, is
the notation of CSP in the form introduced by Hoare in his book “Communicating
Sequential Processes” [64].

Two basic concepts lie behind the notation of CSP. Firstly, a system in which
concurrent activities take place can be described as a sequential process which can
take part in sequences of events. Secondly, that processes can be put together from
component parts which are simpler processes. Thus the basic notation enables us to
describe events, processes and ways of combining processes. For each construction
the semantic rules of CSP then tell us what the behaviour of the corresponding
process is.

In this chapter we present the CSP notation in the form in which we shall use
it, and discuss ways of reasoning about the behaviour of processes described in
CSP. As we shall see, there are two approaches to this reasoning. Firstly, we can
define an algebra for processes. Such an algebra essentially expresses equalities
between processes (where two processes are equal if they have the same behaviour)
in terms of equalities between CSP expressions. Such equalities enable us to expand
or reduce such expressions by algebraic manipulation, so that we can get them into
a form where the behaviour of the process described becomes apparent.

Secondly, we can define a logic for reasoning about the properties of processes,
and in particular for reasoning about whether they satisfy some predicate which we
think of as a specification. This is a very valuable tool for analysis of protocols, as
it enables us to give formal proofs that a protocol specified in CSP is correct, in the
sense that it actually has some desired property, such as preserving the sequence of
data communicated via the protocol. In the next chapter we shall present an extended
example of a proof of correctness in this sense.

7

8 2 CSP Descriptions and Proof Rules

2.1 Processes and Process Synchronisation

Because one of the aims of CSP is to describe concurrent activities, one of the
most important ways of combining processes is by setting them to run in parallel
with one another. This is known as parallel composition. A characteristic of parallel
composition in CSP is that when two processes P and Q run in parallel and are
specified to take part in the same event, say a, then their activity can be synchronised
at that event.

Synchronisation means that when one of them, say P, reaches a point where it
could potentially take part in (say) a, then it cannot actually do so until its ‘partner’
Q also takes part in a. A common way of expressing this is to say that P makes an
offer to take part in a, and that another process must accept this offer before P can
continue. This is illustrated in Figure 2.1.

If P has reached a point where it can only take part in a, then it must wait until
the partner is ready and willing to take part in just exactly the event a. If the partner
never makes a suitable offer, then P will effectively be deadlocked. In many cases,
however, there will be several events in which P could potentially take part, and it
will be able to choose one of those events for which a partner is ready, or possibly
an event for which no partner is required. Thereafter it will continue with whatever
activities it can take part in after the chosen event.

The events which a process, say P, can take part in fall into two classes:

External events, which are visible from outside P, and which other processes can
synchronise with if they are combined with P by parallel composition.

Internal events, which are not visible from outside P, and which other processes
therefore cannot synchronise with. Evidently, no partner is needed for participa-
tion in internal events.

The set of externally visible events which a process P potentially can take part in
is known as P’s alphabet, which we shall denote αP. Note that it is not necessarily
the case that a process actually will take part in all events in its alphabet; αP may in
fact include events which P never offers to take part in. A simple example of this is
a deadlocked process, which cannot take part in any of the events of its alphabet.

Fig. 2.1 Parallel execution of
two processes with synchro-
nisation.
P and Q are here required
to be synchronised on every
event a. The thick vertical
lines indicate synchronised
events in the two processes.
The dotted lines indicate peri-
ods of time where P is willing
to take part in an event a, but
its partner Q is occupied with
other activities.

a a ab bP

Q a a ac d c c d

Time

2.1 Processes and Process Synchronisation 9

It is a feature of CSP that events from a process’ alphabet can be explicitly hid-
den, i.e. made invisible to the external world. The hidden events are, by defini-
tion, removed from the alphabet. This feature is used to introduce abstraction in
process descriptions. Otherwise, all events from all component processes in a com-
plex process P would automatically be visible – and could be synchronised with, if
another process were combined in parallel with P.

Effectively, every process runs within an environment made up of the totality of
those processes with which it is running in parallel. However, this environment is
never ‘closed’, and new processes can be added to it if desired. Because of the syn-
chronisation rules, parallel composition of an existing process with a new process
may of course affect which events the existing process will take part in. So we have
to make clear to ourselves what environment we mean, when we are discussing
what a process ‘does’. In most of what follows, we shall suppose that processes run
in an environment which enables them to take part in all the events which are not
explicitly hidden.

2.1.1 Process Expressions

The basic notation for the definition of processes is by a set of process equations,
each of them of the form:

p def= P

or p[i : D] def= P

where p is a process identifier, possibly with one or more subscripts (parameters), i,
in some domain D , and P is a process expression, which may depend on p and i. To
start with, we shall for generality define the syntactic class of process expressions,
P , by the grammar:

P ::= STOPA | p | p[e] | a→P | P �P | P[]P |
P ‖A P | P |||P | P[d/c] | P \A

To avoid excessive use of brackets, we assume that → binds more tightly than � or
[], so that for example (a→ P[]Q) is to be understood as ((a→ P)[]Q).

The informal semantics of these expressions is as follows:

STOPA is a process which is unable to perform any action in the set A – the
process is deadlocked. Often the set A will correspond to the alphabet of the
process being defined, and in such cases we shall for notational convenience
omit A.

p is a process identifier. The corresponding process must be defined by a defini-
tion of the form p def= P . The alphabet of p is then αP .

p[e], where p is a process identifier and e is an expression of type D , denotes a

parameterised process whose definition is of the form p[i : D] def= P , where each

10 2 CSP Descriptions and Proof Rules

occurrence of i in P has been replaced by the value of e. In what follows we shall
allow D if necessary to be a composite domain, so that i is in fact a sequence of
parameters, and e correspondingly a sequence of values for these parameters. The
actual notation which we use for denoting e and D is summarised in Appendix
A; it follows the conventions of the specification language VDM. As in the case
of non-parameterised processes, the alphabet of p[e] is αP .

a→ P is a process which must initially take part in the event a and then behaves
like the process described by P. This syntactic construction is known as prefixing.
Its alphabet is (αP∪{a}).

P�Q is a process which behaves like P or Q, but the choice between them is
non-deterministic and cannot be controlled from the environment in which P�Q
performs. This is known as internal non-determinism. From outside, it appears as
though an arbitrary decision is made internally between the behaviour described
by P and the behaviour described by Q. This is only defined if P and Q have the
same alphabet, which thus becomes the alphabet of the combination.
Note that in CSP it is not assumed that this choice is fair – neither in the intu-
itive sense that there are equal probabilities of P and Q being chosen, nor even
in the more restricted technical sense that if infinitely many attempts are made to
perform (P�Q), then each of the alternatives will eventually be observed. The
choice really is an arbitrary one. If we want to assign probabilities to the alterna-
tives, we must specify this separately, outside the process description itself.

P[]Q is a process which behaves like P or Q, but the environment ‘decides’ which
of these possibilities will occur, by behaving in a way which enables P or Q to
proceed, i.e. by accepting the offer of an event which is a prefix for P or Q re-
spectively. If the environment enables both alternatives to proceed, the choice
between them is arbitrary. This is known as external non-determinism. This is
likewise only defined if P and Q have the same alphabet, which is also the alpha-
bet of the combination.

P ‖A Q is a process which behaves like P and like Q when they operate indepen-
dently, except that all events in the event set A must be synchronised. This is
known as parallel composition. Its alphabet is αP∪αQ.
It is assumed that A⊆ (αP∪αQ), i.e. that A is a subset of the combined alphabets
of P and Q. For notational convenience we shall omit A if A = (αP∩αQ), i.e. if
P and Q are synchronised over all events which they have in common. We write
P ‖ Q for the parallel composition in this case.
The case where A = {} is special, as the two processes P and Q are then not
synchronised with one another. To emphasise this, we shall use the following
special notation:

P ||| Q denotes the process which behaves like P and Q running in parallel without
mutual synchronisation. The meaning of parallel composition in this case is taken
to be that the behaviour of P |||Q is an arbitrary interleaving of the behaviours of
P and Q. In other words, the sequence of events in which the composed process
takes part is a member of the set of all possible interleavings of the sequences in
which P can take part with those in which Q can take part.

2.1 Processes and Process Synchronisation 11

Suppose for example that P can have the behaviour described by (a → b →
STOP), i.e. it can take part in an event a and then an event b before deadlock-
ing, and that Q can have the behaviour given by (a→ STOP� c→ STOP), i.e.
can take part in an event a or an event c before deadlocking. Then the possible
sequences of events which may be observed for P ||| Q are:

〈a,a,b〉, 〈a,a,b〉, 〈a,b,a〉, 〈c,a,b〉, 〈a,c,b〉, 〈a,b,c〉

Similarly, if Q’s behaviour is described instead by (c → d → STOP), then the
observable sequences of events for P ||| Q become:

〈c,d,a,b〉, 〈c,a,d,b〉, 〈c,a,b,d〉, 〈a,c,d,b〉, 〈a,c,b,d〉, 〈a,b,c,d〉

P[d/c] is a process which behaves like P with all occurrences of event c replaced
by d. This is known as renaming. The alphabet after renaming is (αP)−{c}∪
{d}.

P\A is a process which behaves like P except that all events in the event set A are
invisible to the environment, and are therefore internal events. This is known as
hiding or restriction. The alphabet after hiding is (αP)−A.

Some simple examples of process definitions according to this grammar (partly
taken from [64]) are given in Figure 2.3. These definitions describe a number of
vending machines (V Mxxx), a customer, and a small demon – as illustrated in
Figure 2.2. The event coin represents the event in which a coin is put into the ma-
chine, while choc and to f f ee represent the events in which respectively a chocolate
bar and a toffee bar are removed from the machine. Note that these events are in
this style of description given in a very abstract manner, and that the ‘direction’ of
the event cannot be seen in the process definition. We shall in Section 2.1.3 look at
another style of description in which more details are included.

Note also that such events require the synchronised cooperation of two parties –
here, for example, the machine and the customer or the machine and the demon.
More generally, we assume that an event in one process can only take place if the
process is composed with another process which has the same event in its alphabet.

VMBREAK0 is a process which can take part in a coin event and then deadlock.
It thus describes a machine which breaks as soon as a coin is put into it, whereas
VMBREAK2 describes one which breaks after two coins have been put in and two
chocolate bars have been taken out.

Fig. 2.2 The Dramatis Per-
sonæ described by the process
expressions of Figure 2.3:
A customer (left), a vending
machine (center) and a demon
(right).

Insert
coins here

obtain item
Pull drawer to

ChocToffee

Chocolate Co.
The CSP

(Estd. 1978)

12 2 CSP Descriptions and Proof Rules

V MBREAK0 def= (coin→ STOP)

V MBREAK2 def= (coin→ (choc→ (coin→ (choc→ STOP))))

V MCT def= (coin→ (choc→V MCT []to f f ee→V MCT))

GRCUST def= (to f f ee→ GRCUST
[]choc→ GRCUST
[]coin→ (choc→ GRCUST))

GRCUSTV M def= (GRCUST ‖{coin,choc,to f f ee} V MCT)

V MPOORM def= (V MCT � V MBREAK0)

V MFAULTY def= (coin→ (choc→V MFAULTY
[]to f f ee→V MFAULTY)

�V MBREAK0)

DEMON def= (choc→ DEMON)

V MDEMON def= (DEMON ‖{choc} V MCT)\{choc}

Fig. 2.3 CSP descriptions of some simple vending machines and their customers.

VMCT describes a machine which is prepared to accept a coin, and then either
give out a chocolate bar or a toffee bar, depending on what the environment is pre-
pared for. It then behaves like V MCT , i.e. it is prepared to accept a coin, and so on.
This is an example of a recursive definition, where the behaviour being defined is
referred to in the definition. This is the normal way to define repetitive behaviour in
CSP.

GRCUST likewise describes a greedy customer, who is prepared to accept a toffee
or a chocolate bar without paying, or to put a coin into the machine. If the greedy
customer puts a coin in, then he (or she) is only prepared to accept a chocolate bar.
The customer’s greed is unlimited by internal factors: after accepting whatever the
machine has to offer, the customer is ready to try again.

If, however, the environment in which GRCUST operates is a VMCT-machine,
and there are no other (stupid) customers who put a coin in and forget to extract
what they want, then he will have to pay every time. This is shown by the behaviour
of GRCUSTVM, where the behaviours of GRCUST and VMCT are synchronised
over the events {coin,choc, to f f ee}. Since the only common initial event for the
two processes is coin, the only possible behaviour of GRCUSTVM is given by:

GRCUSTV M = (coin→ (choc→ GRCUSTV M))

in which both customer and machine indulge in an unlimited sequence of events in
which the customer continually alternates between putting in a coin and taking out
a chocolate bar.

The two machines VMPOORM and VMFAULTY are defective in different ways.
VMPOORM is poorly manufactured, so when it is installed it may operate correctly
(like VMCT) or it may not work at all (like VMBREAK0), whereas VMFAULTY

2.1 Processes and Process Synchronisation 13

behaves like VMCT until, quite at random, and determined by reasons internal to
itself, it breaks by accepting a coin and then refusing to do anything more.

Finally, we consider the little demon, described by DEMON. Each time a choco-
late bar appears, the demon removes it. The behaviour of the machine VMDEMON,
in which the demon is included in the machine, can be rewritten as:

V MDEMON def= (coin→ (to f f ee→V MDEMON[]τ →V MDEMON))

where τ represents some internal event which the customer, acting as external ob-
server, cannot see. However, the customer notices the effect of the event, since if
that path is chosen then the customer no longer has the option of extracting a tof-
fee bar, but only of putting a new coin into the machine. In CSP, it is customary
only to include externally visible behaviour in process expressions; if we follow this
convention, then process expressions of the form:

(a→ P[]τ → Q) where a 	= τ

should be replaced by:

(Q� (Q[]a→ P))

This expresses the fact that internal events appear to the external observer as internal
non-determinism: the machine appears to make arbitrary decisions, which cannot be
affected by the environment, about how to behave. In the case of VMDEMON we
have:

V MDEMON = (coin→(V MDEMON
�(V MDEMON[]to f f ee→V MDEMON)))

The proof of this is left as an exercise for the reader (Exercise 2.3).

2.1.2 Process Algebra

CSP processes can be analysed by use of a process algebra, which defines equiv-
alences between process expressions. These equivalences can be used in order to
simplify process expressions containing process operators, just as classical alge-
braic rules are used to reduce expressions containing arithmetic operators. Studying
the equivalences can also give you more insight into the semantics of the process op-
erators, so it is a good idea to look at them carefully, to see whether they correspond
to your expectations. If they don’t, you should try to clear up the misunderstanding.
We consider the process operators in turn, as follows:

14 2 CSP Descriptions and Proof Rules

Internal non-deterministic choice, ���

P�P = P (�1)
P�Q = Q�P (�2)

P� (Q�R) = (P�Q)�R (�3)

In other words, � is idempotent (1), commutative (2) and associative (3).

x→ (P�Q) = (x→ P� x→ Q) (�4)

Thus → (and, as we shall see, ‖, [], ||| and \) distributes over internal choice. How-
ever, recursion does not distribute over �; a counter-example is:

1. P def= (a→ P)� (b→ P)
Here there is a choice between a and b for each iteration. The sequences of
events in which P can take part (the traces of P) can thus contain mixtures of
a’s and b’s, e.g. 〈a,b,a,a,b〉.

2. Q def= QA�QB, where QA def= (a→ QA) and QB def= (b→ QB).
Here there is a choice between a and b (i.e. between QA and QB) on the first
step. The traces of Q can thus only be 〈a,a,a, ...〉 or 〈b,b,b, ...〉.

External non-deterministic choice, [][][]

P[]P = P ([]1)
P[]Q = Q[]P ([]2)

P[](Q[]R) = (P[]Q)[]R ([]3)
P[]STOP = P ([]4)

In other words, [] is idempotent (1), commutative (2) and associative (3), and has
STOP as neutral element. In addition it distributes over internal choice, �, and vice
versa:

P[](Q�R) = (P[]Q)� (P[]R) ([]5)
(P[]Q)�R = (P�R)[](Q�R) ([]6)

This latter equality expresses the idea that internal choice and choices made by the
environment are independent. You may find this rather surprising, so you should
consider carefully why it is true.

Finally, we have a rule for combining multiple choices:

(x : A→ P[[x]])[](y : B→ Q[[y]]) = (z : (A∪B)→ R[[z]]) ([]7)

where notations of the form (v : E → S[[v]]) for a set of events E = {e1,e2, . . . ,en}
are a shorthand for the multiple choice:

(e1 → S[[e1]])[](e2 → S[[e2]])[] . . . [](en → S[[en]])

2.1 Processes and Process Synchronisation 15

where S[[ei]] describes the behaviour of S after initial event ei. Then R[[z]] is given
by:

R[[z]] =

⎧
⎨

⎩

P[[z]] if z ∈ (A−B)
Q[[z]] if z ∈ (B−A)
P[[z]]�Q[[z]] if z ∈ (A∩B)

The two first possibilities here are obvious. The third possibility states that when
an initial event may occur in two or more branches of a choice, then we cannot tell
which of these branches will be chosen, so the overall behaviour appears like an
internal choice. For example:
Given the definitions:

X def= (a→ b→ STOP
[]b→ c→ STOP)

Y def= (b→ d → STOP
[]e→ f → STOP
[]g→ b→ c→ STOP)

Then X []Y has the form of the left-hand side in []7, where:

A = {a,b}
P[[a]] = b→ STOP
P[[b]] = c→ STOP

B = {b,e,g}
Q[[b]] = d → STOP
Q[[e]] = f → STOP
Q[[g]] = b→ c→ STOP

From this it follows that:

A∪B = {a,b,e,g}
R[[a]] = P[[a]] = b→ STOP
R[[b]] = P[[b]]�Q[[b]] = (c→ STOP�d → STOP)
R[[e]] = Q[[e]] = f → STOP
R[[g]] = Q[[g]] = b→ c→ STOP

and thus that:

X []Y = (a→ b→ STOP
[]b→ (c→ STOP�d → STOP)
[]e→ f → STOP
[]g→ b→ c→ STOP)

A simple but important special case of the equivalence []7 is:

(a→ P[]a→ Q) = a→ (P�Q) ([]8)

16 2 CSP Descriptions and Proof Rules

This corresponds to the rather obvious fact that if the environment offers to perform
an event a, then either of the two branches (a → P) or (a → Q) in the left-hand
process can be chosen. So seen from the outside, it appears as if the process inter-
nally decides whether to behave like P or Q after taking part in the event a.

Parallel composition with synchronisation, ‖‖‖

The parallel operator, ‖, is here specialised in the way that (P ‖Q) implies synchro-
nisation on all events in P’s and Q’s common alphabet, (αP∩αQ). The equivalence
rules are:

P ‖ P = P (‖1)
P ‖ Q = Q ‖ P (‖2)

P ‖ (Q ‖ R) = (P ‖ Q) ‖ R (‖3)
P ‖ STOPαP = STOPαP (‖4)
P ‖ (Q�R) = (P ‖ Q)� (P ‖ R) (‖5)

In other words, ‖ is idempotent (1), commutative (2) and associative (3), has STOP
as zero element (4), and distributes over �. In addition, assuming that

a ∈ (αP−αQ), b ∈ (αQ−αP), c,d ∈ (αP∩αQ)

we have:

(c→ P) ‖ (c→ Q) = c→ (P ‖ Q) (‖6)
(c→ P) ‖ (d → Q) = STOPαP∪αQ, c 	= d (‖7)
(a→ P) ‖ (c→ Q) = a→ (P ‖ (c→ Q)) (‖8)
(c→ P) ‖ (b→ Q) = b→ ((c→ P) ‖ Q) (‖9)
(a→ P) ‖ (b→ Q) = (a→ (P ‖ (b→ Q)) (‖10)

[]b→ ((a→ P) ‖ Q))

The more general case of parallel composition of processes with multiple choices
of initial event is expressed by:

(x : A→ P[[x]]) ‖ (y : B→ Q[[y]]) = (z : C→ (P′[[z]] ‖ Q′[[z]])) (‖11)

where we use the same notation for multiple choices as before. The set C =
(A∩B)∪ (A−αQ)∪ (B−αP) is the set of possible initial events for the composed
process. Events in (A∩B) require synchronisation between the two processes which
are being composed, while events in (A−αQ) are initial events of the left-hand
process which are not in the alphabet of the right-hand process, and which there-
fore do not need to be synchronised, and events in (B−αP) are correspondingly
initial events of the right-hand process which are not in the alphabet of the left-hand
process. To put this another way, the possible initial events are those which the two
processes P and Q agree to offer, together with those events which either of them
can perform without the cooperation of the other.

2.1 Processes and Process Synchronisation 17

After taking part in an initial event z chosen from the set C, the composed process
behaves like P′[[z]] ‖ Q′[[z]], where:

P′[[z]] =
{

P[[z]] if z ∈ A
(x : A→ P[[x]]) if z 	∈ A

Q′[[z]] =
{

Q[[z]] if z ∈ B
(y : B→ Q[[y]]) if z 	∈ B

In other words, P′[[z]] and Q′[[z]] describe the behaviours of the component processes
after taking part in the chosen initial event z. If the left-hand process cannot take part
in z (because z 	∈ A), then it makes no progress. Correspondingly if the right-hand
process cannot take part in z because z 	∈ B, then it makes no progess. For example:

Consider the process X ‖ Y , where X and Y are defined as on page 15 by:

X def= (a→ b→ STOP
[]b→ c→ STOP)

Y def= (b→ d → STOP
[]e→ f → STOP
[]g→ b→ c→ STOP)

Then X ‖ Y has the form of the left-hand side in ‖11, where:

A = {a,b}
P[[a]] = b→ STOP
P[[b]] = c→ STOP

B = {b,e,g}
Q[[b]] = d → STOP
Q[[e]] = f → STOP
Q[[g]] = b→ c→ STOP

C = {a,b,e,g}

where we here assume that αX = {a,b,c} and αY = {b,c,d,e, f ,g}, which means
that A∩B = {b}, A−αY = {a} and B−αX = {e,g}. From this it follows that:

P′[[a]] = P[[a]] = b→ STOP
P′[[b]] = P[[b]] = c→ STOP
P′[[e]] = (x : A→ P[[x]]) = X
P′[[g]] = (x : A→ P[[x]]) = X
Q′[[a]] = (y : B→ Q[[y]]) = Y
Q′[[b]] = Q[[b]] = d → STOP
Q′[[e]] = Q[[e]] = f → STOP
Q′[[g]] = Q[[g]] = b→ c→ STOP

18 2 CSP Descriptions and Proof Rules

and rule ‖11 then tells us that:
X ‖ Y = (a→ (b→ STOP ‖ Y)

[]b→ (c→ STOP ‖ d → STOP)
[]e→ (X ‖ f → STOP)
[]g→ (X ‖ b→ c→ STOP))

From this rule it also follows that parallel composition with synchronisation dis-
tributes over [] in the sense that:

(a→ P[]b→ Q) ‖{a} (a→ R) = (a→ (P ‖{a} R) (‖12)
[](b→ Q) ‖{a} (a→ R))

A large number of other useful derived rules can be demonstrated in a similar
manner.

As a more interesting example, consider the process GRCUSTV M of Figure 2.3,
which we have previously discussed in an informal manner. It follows from the use
of these rules that:

GRCUSTV M = (GRCUST ‖V MCT) De f .
= (to f f ee→ GRCUST De f s.

[]choc→ GRCUST
[]coin→ choc→ GRCUST)
‖ (coin→ (choc→V MCT

[]to f f ee→V MCT))
= coin→ ((choc→ GRCUST) ‖ (choc→V MCT ‖11

[]to f f ee→V MCT))
= coin→ choc→ (GRCUST ‖V MCT) ‖11
= coin→ choc→ GRCUSTV M De f .

This is the result which we presented above without proof. We note that the
(only) possible initial event of (GRCUST ‖ V MCT) is coin, and that after this
GRCUST behaves as (choc → GRCUST), while V MCT behaves as (choc →
V MCT []to f f ee→V MCT), according to rule ‖11. The rest of the reduction is trivial.

Parallel composition with interleaving, |||||||||

P ||| Q = Q ||| P (|||1)
P ||| (Q ||| R) = (P ||| Q) ||| R (|||2)
P ||| STOPA = P, A⊆ αP (|||3)
P ||| (Q�R) = (P ||| Q)� (P ||| R) (|||4)

In other words, ||| is commutative (1) and associative (2), has STOP as neutral ele-
ment (3) and distributes over internal choice, �. Furthermore:

2.1 Processes and Process Synchronisation 19

(x→ P) ||| (y→ Q) = (x→ (P ||| (y→ Q)) (|||5)
[]y→ ((x→ P) ||| Q))

In other words, efter an initial event chosen from the left-hand or right-hand process,
the ‘rest’ of the two processes continue to run in parallel. Or, to put it another way,
the initial events of the two processes can occur in any order – a consequence of
the fact that ||| gives in an interleaving of the behaviours of the two component
processes. Using the notation for multiple choices from above, this rule can be gen-
eralised to:

(x : A→ P[[x]]) ||| (y : B→ Q[[y]]) = (x : A→ (P[[x]] ||| (y : B→ Q[[y]])) (|||6)
[]y : B→ ((x : A→ P[[x]]) ||| Q[[y]]))

Note that, unlike ‖, the interleaving operator ||| is not idempotent. As a simple
example, consider the process P whose behaviour is given by (a → b → STOP).
Then the only possible sequence of observable events for P is 〈a,b〉, whereas for
P ||| P the possible sequences are:

{〈a,b,a,b〉,〈a,a,b,b〉}

i.e. the possible interleavings of the sequences from each of the two components.
Furthermore, ||| does not distribute over []. A counter-example is:

1. P def= ((a→ STOP) ||| (b→ R[]c→ S))
Only the left-hand process can here take part in the initial event a. After this, P
behaves like STOP ||| (b→ R[]c→ S), which is identical to (b→ R[]c→ S).

2. Q def= ((a→ STOP ||| b→ R)[](a→ STOP ||| c→ S))
Either process can here take part in the initial event a. Since we cannot from
the environment control which of the processes will be chosen, Q then behaves
as (STOP ||| (b→ R))� (STOP ||| (c→ S)), which (by Rule ||| 3) is identical to
(b→ R� c→ S).

Hiding, \\\

P\{} = P (\1)
(P\B)\C = P\ (B∪C) (\2)
(P�Q)\C = (P\C)� (Q\C) (\3)
STOPA \C = STOPA−C (\4)

P\C = P, if C 	∈ αP (\5)

(x→ P)\C =
{

x→ (P\C), if x 	∈C
(P\C), if x ∈C (\6)

(x : B→ P[x])\C = x : B→ (P[x]\C), if (B∩C) = {} (\7)
(x→ P[]y→ Q)\C = (P\C)� ((P\C) if x ∈C, y 	∈C

[](y→ (Q\C)))
(\8)

20 2 CSP Descriptions and Proof Rules

Note that although \ distributes over � (Rule \3), it does not distribute over []. A
counter-example, which again illustrates the way in which the algebra can be used
to reduce process expressions, is:

1. P def= (c→ STOP[]d → STOP)\{c}
This can be reduced as follows:

P = (STOP\{c})� ((STOP\{c})[](d → (STOP\{c}))) Rule \8
= STOP� (STOP[]d → STOP) \4
= STOP� (d → STOP) []4

2. Q def= ((c→ STOP)\{c}[](d → STOP)\{c})
This can be reduced as follows:

Q = ((STOP\{c})[](d → (STOP\{c}))) Rule \6
= (STOP[]d → STOP) \4
= (d → STOP) []4

Since neither P nor Q can be reduced further, we conclude that they are not equal –
P can make an internal choice to deadlock immediately without taking part in any
externally visible events, whereas Q must take part in a d event before deadlocking.

Renaming, ///

P[x/x] = P (/1)
P[x/y]][v/w] = P[v/w][x/y], if x 	= w∧ y 	= w (/2)

= P[x/y], if y = w

= P[v/y], if x = w

These rules state the rather obvious facts that renaming an event by itself has no
effect (1), and that two consecutive renamings can be made in any order if they do
not replace the same variables (2).

For analysis of communication protocols, the process algebra of CSP is particu-
larly useful for reducing systems of cooperating procssses to simpler forms, whose
properties can more easily be proved using the approach shown in Sections 2.2 and
2.3. We have seen an example of how this reduction can be done in the case of the
process GRCUSTV M. More examples can be found in the exercises.

2.1.3 Process Expressions for Process Networks

The grammar of process expressions given above is based on a very general concept
of events. For describing distributed systems, it is helpful to restrict it to deal with
communication events, in which two processes synchronise their activity on passing

2.1 Processes and Process Synchronisation 21

a message from one to the other. Each such communication event corresponds to
one of the elementary communications discussed in the first section of this chapter.

Our model of a distributed system will then be that of a process network: a set
of uniquely named processes which communicate through a set of uniquely named
channels. This is illustrated in Figure 2.4. In the figure, the channels with names
c1 . . .c3 are so-called external channels and d1 . . .d6 are internal channels.

By analogy with the simple case discussed in section 2.1.1, we call the set of
channels associated with process P the channel alphabet of P, denoted αcP. For
example, in Figure 2.4:

αcP4 = {c3,d2,d6}

The full alphabet, αP, for a process P is as usual the set of externally visible events
which P potentially can take part in. Simple (non-communication) events have, as
before, no ‘internal structure’. But each communication event needs to be described
by two components: the channel and the value communicated. For channel c and
value e we denote this c.e. Thus αP becomes the set of all combinations of a channel
name with the values which can be passed on that channel. For example, if channel
c3 can pass values in {1,2,4}, d2 can pass values in {true, false}, and d6 values in
{0,1}, then the full alphabet of process P4 in Figure 2.4 is:

αP4 = {c3.1,c3.2,c3.4,d2.true,d2.false,d6.0,d6.1}

When dealing with process networks, we extend the grammar for process expres-
sions P to:

P ::= STOPA | p | p[e] | c!e→P | c?x : M →P |
P�P | P[]P | P ‖A P | P |||P | P[d/c] | P \L |
(if b then P else P)

Here e denotes a (non-process) expression, b a Boolean expression, x:M a variable
x of type M, c a channel, and A and L denote sets of channels. As before, we assume
that→ binds more tightly than � or [].

The informal semantics of these expressions is as follows:

��

��
P1

��

��
P2

��

��
P3

��

��
P4

��

��
P5

�

������
�

��	

 �

�
�

�
�
�

��������

���
���

�

c1

c2

c3

d1

d2d3 d4

d5
d6

Fig. 2.4 A Process Network with five processes and nine channels

22 2 CSP Descriptions and Proof Rules

STOPA corresponds to deadlock for all communications over channels in the set
A, as before.

p is a process identifier for a process whose definition is of the form p def= P ,
and α p = αP , as before.

p[e], where p is an identifier and e is an expression of type D , denotes a parame-

terised process, whose definition is of the form p[i : D] def= P , and α p = αP ,
as before. The notation used for denoting e and D is given in Appendix A.

c!e→ P denotes the process which first takes part in an communication event
by outputting the value of e on channel c, and then behaves like P. When the
processes associated with the channel are required to synchronise the events in
which they take part via that channel, then the output event denoted by c!e must
be synchronised with an event in which input takes place. The alphabet of the
process with prefixing is αP∪{c.e}.

c?x : M → P denotes the process which takes part in a communication event by
inputting a value of type M to x via channel c, and then behaves like P. The
variable x is a bound variable of the process, and will of course generally appear
in P, where it takes on the input value. The alphabet in this case is αP∪{c.v|v ∈
M}

P�Q and P[]Q correspond to internal and external non-determinism respectively,
as before. These are only defined when P and Q have the same alphabet, which
is thus also the alphabet for the combination.

P ‖A Q denotes parallel composition of P with Q, with synchronised communi-
cation over those channels which lie in the channel set A. It is assumed that
A ⊆ (αcP∪αcQ), i.e. that A is a subset of the combined channel alphabets of
P and Q. For notational convenience we shall omit A if it is the channels com-
mon to the alphabets of P and Q, (αcP∩αcQ). We write (P ‖ Q) for the parallel
composition in this case. The alphabet of P ‖A Q (or P ‖ Q) is αP∪αQ.
Note that if αcP = {a,b,c}, and αcQ = {b,c,d}, then P ‖ Q denotes a network
in which P and Q are connected to one another via the channels in {b,c}, and
perform synchronised communication over them. P and Q are still free, however,
to perform external communication over their external channels a and d, i.e. those
channels which lie in (αcP−αcQ) and (αcQ−αcP) respectively.
The case where A = {} is special, as the two processes P and Q are then not
synchronised with one another. To emphasise this, we shall again use the special
notation:

P ||| Q denotes the process which behaves like P and Q running in parallel without
mutual synchronisation. The behaviour of P |||Q is again taken to be an arbitrary
interleaving of the behaviours of P and Q. As with synchronised composition, the
alphabet is αP∪αQ.

P[d/c] denotes the process in which all references to c have been replaced by
references to d, as before. The channel alphabet of this process is (αcP)−{c}∪
{d}.

P\L denotes the process where all events taking place on (internal) channels in
the set L within P are invisible. The channel alphabet of this process is (αcP)−L.

2.1 Processes and Process Synchronisation 23

(if b then P else Q) denotes the process which behaves like P if the Boolean ex-
pression b is true, and otherwise behaves like Q. This is only defined if P and Q
have the same alphabet, which is then the alphabet of the combination.

Some simple examples of process descriptions using this notation are given in
Figure 2.5. The process V MCT ′ describes a component which first accepts a value
of a coin on channel slot, and then either outputs a chocolate bar or a toffee on
channel drawer. This is essentially the same as the vending machine V MCT in
Figure 2.3, but now described in terms of interactions where values are passed over
channels. Note that we do not any more have to assume (or imagine) which direction
the coins, chocolates and toffees move in. This information is explicitly given as part
of the process description, which is therefore less abstract than before.

The process BUF1 describes a system component which continually inputs a
non-negative integer from channel le f t, and outputs it again via channel right. This
is a one-place buffer – a buffer with space for one number.

Processes SENDER and Q[x] are mutually recursive. SENDER accepts input of
a value for y (from some arbitrary domain of messages, M) via channel user and
then behaves like Q[y]. With parameter value y, Q outputs y via channel wire and
is then prepared for input of a value in {ACK, NACK} from the same channel. If the
value received is ACK, then Q behaves like SENDER, otherwise it tries to send the
message again. Note how parameters are used to describe state components of the
process, i.e. values which need to be remembered from one recursive execution of
the process to the next.

The process T IMER represents a simple timer, which starts when it receives a
value SET via channel up, and can then either accept a value RESET or send a value
TIMEOUT. Once it has engaged in one of these events, it is ready to be started again.

Finally, the process QT represents an ‘improved’ version of Q, in which a SET
message is sent via up every time a message received from the user has been sent
via channel wire, and the user’s message is retransmitted if a TIMEOUT message is
received via up.

V MCT ′ def=(slot?c : Money→ (drawer!chocolate→V MCT ′

[]drawer!to f f ee→V MCT ′))

BUF1 def=(le f t?x : N0 → (right!x→ BUF1))

SENDER def=(user?y : M → Q[y])

Q[x : M] def=(wire!x→ (wire?a : {ACK}→ SENDER
[]wire?a : {NACK}→ Q[x]))

T IMER def=(up?s : {SET}→ (up?r : {RESET}→ T IMER
[]up!TIMEOUT→ T IMER))

QT [x : M] def=(wire!x→ (up!SET →(wire?a : {ACK}→ (up!RESET → SENDER)
[]wire?a : {NACK}→ (up!RESET → QT [x])
[]up?t : {TIMEOUT}→ QT [x])))

Fig. 2.5 CSP definitions of processes with communication

24 2 CSP Descriptions and Proof Rules

Process Algebra for Process Networks

With this extended syntax for process expressions, the process algebra for CSP
needs to be modified slightly. Firstly, we have to remember that hiding and synchro-
nised parallel composition now refer to sets of channels instead of sets of events.
Secondly, the rule (‖6) for parallel composition with synchronisation becomes:

(c!e→ Q) ‖ (c?x : D → P[x]) =
{

c!e→ (Q ‖ P[e]) if e ∈D
STOPc otherwise (‖6’)

There are three important things to notice here. Firstly, an input and an output event
of the same type on the same channel can be synchronised, and the value of the vari-
able referred to in the input event takes on the value of the expression in the output
event. Thus in ‖6’, the variable x takes on the value of e. Secondly, if the input and
output offers do not match with respect to type, the composed process deadlocks.
And thirdly, when an input and output event are synchronised, the resulting event is
presented as the output. This is a convention in CSP, reflecting physical reality. On
a real physical channel, there can in general only be one party transmitting a signal
at a given instant, whereas there can be many parties which receive the transmitted
signal. Thus in CSP, an offer of output can be synchronised with multiple parallel
offers of input. If the resulting event were represented by an input event, this could
obviously be synchronised with another output, which does not make physical sense.

Rules ‖7 to ‖10 have to be modified in a similar way, but there are several variants
of each, depending on whether the events which have to be synchronised are inputs
or outputs. For example, under the assumption that:

a ∈ (αPc−αQc), b ∈ (αQc−αPc), c,d ∈ (αPc∩αQc)

we have
(a!e→ P) ‖ (c?x : M → Q[x]) = a!e→ (P ‖ (c?x : M → Q[x]) (‖7’)
(c!e→ P) ‖ (b?x : M → Q[x]) = b?x : M → ((c!e→ P) ‖ Q[x]) (‖8’)

whereas:
(a?x : M → P[x]) ‖ (c!e→ Q) = a?x : M → (P[x] ‖ (c!e→ Q) (‖8”)
(c?x : M → P[x]) ‖ (b!e→ Q) = b!e→ ((c?x : M → P[x]) ‖ Q) (‖9”)

Finally, the generalisation of these rules to rule (‖11) becomes:
(x : A→ P[[x]]) ‖ (y : B→ Q[[y]]) = z : C→ (P′[[z]] ‖ Q′[[z]]) (‖11’)

where

P′[[z]] =
{

P[[ẑ]] if z ∈ A
(x : A→ P[[x]]) otherwise

Q′[[z]] =
{

Q[[ẑ]] if z ∈ B
(y : B→ Q[[y]]) otherwise

and ẑ is the same as z if z is an output event or an unmatched input event (i.e. one
where the parallel process does not offer a matching output), and is the matching
output event if z is an input event for which the parallel process offers a matching

2.1 Processes and Process Synchronisation 25

output. For example:

Suppose our old friends X and Y are now defined by the process equations:

X = (a?t : M → b!t → STOP
[]b?u : M → c!u→ STOP)

Y = (b!v→ d?p : E → STOP
[]e!v→ f ?q : E → STOP
[]g?r : R → b!r→ c?s : S → STOP)

Then X ‖ Y has the form of the left-hand side in ‖11’, where:

A = α(a?t : M)∪α(b?u : M)
= {a.t|t ∈M }∪{b.u|u ∈M }

P[[a?t : M]] = b!t → STOP
P[[b?u : M]] = c!u→ STOP

B = α(b!v)∪α(e!v)∪α(g?r : R)
= {b.v, e.v}∪{g.r|r ∈R}

Q[[b!v]] = d?p : E → STOP
Q[[e!v]] = f ?q : E → STOP

Q[[g?r : R]] = b!r→ c?s : S → STOP
C = α(a?t : M)∪α(b!v)∪α(e!v)∪α(g?r : R)

= {a.t|t ∈M }∪{b.v,e.v}∪{g.r|r ∈R}

Here we assume that αX = {a.t|t ∈M }∪{b.u|u∈M }∪{c.u|u∈M } and αY =
{e.v}∪ {b.r|r ∈ R}∪ {c.s|s ∈ S }∪ {d.p|p ∈ E }∪ { f .q|q ∈ E }∪ {g.r|r ∈ R},
which means that A∩B = {b.v}, A−αY = {a.t|t ∈M } and B−αX = {e.v}∪
{g.r|r ∈R}. From this it follows that:

P′[[b!v]] = P[[b?u : M]] = c!u→ STOP
P′[[a?t : M]] = P[[a?t : M]] = b!t → STOP

P′[[e!v]] = (x : A→ P[[x]]) = X
P′[[g?r : R]] = (x : A→ P[[x]]) = X

Q′[[b!v]] = Q[[b!v]] = d?p : E → STOP
Q′[[a?t : M]] = (x : A→ Q[[x]]) = Y

Q′[[e!v]] = Q[[e!v]] = f ?q : E → STOP
Q′[[g?r : R]] = Q[[g?r : R]] = b!r→ c?s : S → STOP

and rule ‖11’ then tells us that:

X ‖ Y = (a?t : M → (b!t → STOP ‖ Y)
[]b!v→ (c!u→ STOP ‖ d?p : E → STOP)
[]e!v→ (X ‖ f ?q : E → STOP)
[]g?r : R → (X ‖ b!r→ c?s : S → STOP))

This may look complicated, but of course there are a lot of combinations of things
which can happen when two processes are composed in parallel. Since this is a very

26 2 CSP Descriptions and Proof Rules

common situation which you may need to analyse, it is important to make sure that
you understand the rules involved here.

2.2 Channel History Semantics

The exact semantics of process expressions is given by a function which maps an ar-
bitrary process expression onto its meaning. The ‘meaning’ of a process can be sen-
sibly described in a number of ways, depending on which properties of the process
we wish to take into account. In the first instance, we shall assume that the meaning
is defined by the set of all possible traces – finite sequences of communications –
of the process described by the process expression. The trace which has been ob-
served on a particular channel at a particular moment is known as that channel’s
history, and the model is therefore often known as a channel history model for the
semantics. Channel history models have been shown to be well-suited to describing
the so-called safety properties of certain components of distributed systems, namely
those components which are buffer-like, in the sense that what one process puts in
at one end comes out again at the other [128]. A large number of communication
protocols come into this class.

The safety of a system is roughly speaking the property that “bad things do not
happen”. In other words, if anything happens at all, then it is the ‘right’ things that
happen. However, consideration of safety does not show that anything will in fact
happen. To show this we need to consider the liveness properties of the system.
These are only poorly described by semantic models based solely on traces, and a
better model for discussing them will be introduced in the next section.

2.2.1 Transitions and Traces

The semantics will be described in terms of a labelled transition system:

T = (Γ ,A,→)

where:

Γ is the domain of processes,
A is the domain of events, which includes externally observable communications

but (in accordance with the previously mentioned conventions in CSP) excludes
internal events, so that A = (C×M) | E, where C is the domain of channel
names, M is the domain of messages, and E is the domain of simple (non-
communication) events. Here | indicates an alternative, so each element of A
either belongs to (C×M) or to E (see Appendix A). A trace will then lie in the
domain A∗ of all possible sequences of events.

2.2 Channel History Semantics 27

−→: Γ ×A×Γ is the domain of transitions. A transition is a ternary relation be-
tween (the behaviours of) two processes and an event.

Following standard conventions, we will write a transition in the form:

P a−→ Q

where P and Q are processes and a is an event, or by the shorthand

P s=⇒ Q

which really stands for a sequence of transitions:

P
s1−→ s2−→ . . .

sn−→ Q

where s = 〈s1,s2, . . . ,sn〉 is a trace consisting of the sequence of n events s1,s2, . . . ,sn,
in which s1 is the first event to occur, and so on. These transitions are to be under-
stood to mean that P can take part in the event a (or the trace s), and that P thereafter
behaves like Q.

In order to discuss processes in terms of this formal system, a number of useful
functions on processes can be introduced:

initials(P) defined by:

initials(P) def= {a ∈ A | ∃Q ·P a−→ Q}

where 〈a〉 is the sequence containing the single event a, defines the set of events
in which P can engage in the very first step. For example:

initials(STOP) = {}
initials(a→ P) = {a}
initials(a→ P[]b→ Q) = {a,b}
initials(c!e→ P) = {c.e}

traces(P) defined by:

traces(P) def= {s ∈ A∗ | ∃Q ·P s=⇒ Q}

defines the set of all traces of P. It follows from this definition that:

〈〉 ∈ traces(P)
s t̂ ∈ traces(P)⇒ s ∈ traces(P)

where 〈〉 is the empty trace, and s t̂ is the trace whose first elements are those of
s and whose remaining elements are those of t. The operator ̂, of functionality
A∗ ×A∗ → A∗, is known as the concatenation operator on traces. As examples,
we have:

28 2 CSP Descriptions and Proof Rules

traces(STOP) = {〈〉}
traces(a→ P) = {〈〉}∪{〈a〉 t̂ | t ∈ traces(P)}
traces(a→ P[]b→ Q) = {〈〉}∪{〈a〉 t̂ | t ∈ traces(P)}

∪{〈b〉 t̂ | t ∈ traces(Q)}
traces(c!e→ P) = {〈〉}∪{〈c.e〉 t̂ | t ∈ traces(P)}

We then define the operations #, � and � on traces as follows:

Length, #, of functionality A∗ → N0, such that #s is the length of (number of
events in) the trace s. More formally:

#〈〉 = 0
#〈e〉̂s = 1+#s

where e is an event and s is a trace.
Prefix, ���, of functionality A∗ ×A∗ → BOOL, such that

s � t def= ∃u ∈ A∗ · ŝu = t

If (s � t), then we say that s is a prefix of t. Note that � defines a partial order,
with least element 〈〉, since it obeys:
〈〉� s (least element)
s � s (reflexivity)
s � t ∧ t � s ⇒ s = t (antisymmetry)
s � t ∧ t � u ⇒ s � u (transitivity)
On the other hand, the prefixes of a sequence are totally ordered, since:

s � u∧ t � u ⇒ s � t ∨ t � s

Restriction, ���, of functionality A∗ ×A-set→ A∗, such that s � L denotes the trace
s restricted to the events in the set L. For example,

〈a,b,b,a,c,a,b,d〉 � {a,c} = 〈a,a,c,a〉

For notational convenience, we shall allow ourselves to write the second operand
of the restriction operator as a set of channels, with the meaning that the trace is
to be restricted to all communication events over those channels.

In general, a function f , of functionality A∗ × . . .→ A∗, is said to be strict if it
maps the empty trace to the empty trace:

f (〈〉, . . .) = 〈〉

It is distributive if it distributes over concatenation of traces:

f (s t̂, . . .) = f (s, . . .)̂ f (t, . . .)

It is monotonic if it preserves prefixing:

2.2 Channel History Semantics 29

(s � t) ⇒ (f (s, . . .) � f (t, . . .))

All distributive functions are strict and monotonic. Restriction, �, is an example of a
distributive function, so it is also strict and monotonic:

(s t̂) � A = (s � A)̂(t � A)
〈〉 � A = 〈〉
s � t ⇒ (s � A) � (t � A)

Finally, in discussing the behaviour of a process P, we will often find it useful
to select the history for a particular channel, c, in the set of channels of P. For
this purpose we define the function past, of functionality C → M∗, such that for
a given instant of time, past(c) for a given channel c ∈ C gives the sequence of
message values observed on that channel up to that instant, i.e. the channel history
for channel c. Suppose, for example, that the trace of P observed up to now is:

r = 〈a.1,c.0,c.0,a.0,c.1,a.2,c.0,b.true〉

then r � {c}, the restriction of r to communication events over channel c, is:

s = 〈c.0,c.0,c.1,c.0〉

and past(c) is:

t = 〈0,0,1,0〉

For notational convenience (and following [128]) we shall often omit the function
name, and just write the channel name, say c, where it is clear from the context that
the channel history past(c) is intended.

2.2.2 Inference Rules for Specifications Based on Traces

For discussing the properties of communicating systems, we introduce the concept
of a specification, which is a logical expression of the form:

P sat R

where P is a process expression, and R is an assertion, which in general will be a
predicate involving the free variables of P and the channel names appearing in αcP,
together with other variables, constants, logical operators and so on. The meaning
of P sat R is that R is true before and after every communication event in which
the process described by P can take part. In other words, R is an invariant of P. In
particular, we expect that R will be true of all traces of P:

∀s · s ∈ traces(P)⇒ R

30 2 CSP Descriptions and Proof Rules

If Γ and ∆ are sets of predicates, possibly including specifications, then an infer-
ence is a formula of the form Γ � ∆ , with the meaning that all predicates in ∆ can
validly be inferred from those in Γ . Typically, Γ will contain process definitions and
other assumptions required to demonstrate the truth of ∆ . An inference rule then has
the form:

Γ 1 � ∆1
Γ 2 � ∆2

with the meaning that whenever the inference above the line is valid, then so is the
inference below the line.

The inference rules for specifications based on traces are as follows:

1. ∀∀∀-introduction
Γ � R

Γ � ∀x ∈M ·R
where x is not free in Γ . This and the three following rules are standard inference
rules for natural deduction.

2. Triviality
Γ � T

Γ � P sat T

If T is always true under assumptions Γ , then it is true before and after every com-
munication of P.

3. Consequence
Γ � P sat R, R⇒ S

Γ � P sat S

If R is an invariant of P, and R implies S, then S must also be an invariant of P.

4. Conjunction
Γ � P sat R, P sat S

Γ � P sat (R∧S)

If R is an invariant of P and so is S, then so is R∧S.
The remaining rules are specific to the semantic model considered here. Let R〈〉

denote the assertion derived from R by replacing all channel histories by the empty
trace, 〈〉. Then we can formulate the inference rule:

5. Emptiness
Γ � R〈〉

Γ � STOP sat R

For example, given the process BUF1 defined above in section 2.1.3, we can take
the definition of BUF1 as assumption Γ , and it is then true that Γ � R, where the
assertion R is (right � le f t). The derived assertion R〈〉 is thus: (〈〉 � 〈〉), and the
inference rule enables us to infer the assertion:

STOP sat right � le f t

2.2 Channel History Semantics 31

Another way of looking at this is to say that if R is to be satisfied by STOP, then
it must be true for all possible traces of STOP. As we have seen, traces(STOP) =
{〈〉}, so R must be true of the empty trace.

For the next rule, we introduce the notation that Rc
〈e〉̂c denotes the assertion

derived from R by replacing c by 〈e〉̂c (strictly, of course, replacing past(c) by
〈e〉̂past(c)).

6. Output
Γ � R〈〉, P sat Rc

〈e〉̂c

Γ � (c!e→ P) sat R

As with the previous rule, this reflects the fact that if R is to be satisfied by (c!e→P),
then it must be true for all possible traces of (c!e → P). Now, for communication
events:

traces(c!e→ P) = {〈〉}∪{〈c.e〉 t̂ | t ∈ traces(P)}

So R must be true of the empty trace, and if R is true of a trace, t, of P, then it must
also be true of that same trace prefixed by the communication e on channel c.

Looking again at process BUF1, let us now suppose that it has the specification:

BUF1 sat (right � le f t)∧ (|#le f t−#right| ≤ 1)

Then we wish to show that (right!e→ BUF1) obeys the specification:

(right!e→ BUF1) sat (right � 〈e〉̂le f t)∧ (|#〈e〉̂le f t−#right| ≤ 1)

The right hand side of this is the assertion R. Then R〈〉 is:

(〈〉 � 〈e〉̂〈〉)∧ (|#〈e〉̂〈〉−#〈〉| ≤ 1)

which is trivially true, and the assertion Rright
〈e〉̂right is:

(〈e〉̂right � 〈e〉̂le f t)∧ (|#〈e〉̂le f t−#〈e〉̂right| ≤ 1)

which follows directly from the assertion which we initially assumed held true of
BUF1, and from the definition of a trace. Thus we have demonstrated the validity of
both the required subsidiary inferences of the Output inference rule, and can thus
infer that (right!e→ BUF1) satisfies the specification given above.

The following rule applies correspondingly to input communications:

7. Input
Γ � R〈〉, ∀v ∈M ·P[v/x] sat Rc

〈v〉̂c

Γ � (c?x : M → P) sat R

(It is here assumed that v does not appear free in P, R or c.) For an input communica-
tion event to occur, the receiver must be prepared to receive any value in the domain
M, so the invariant must be satisfied for all such values. In all other respects, the
inference rule is the same as for output, as (successful) input and output both have

32 2 CSP Descriptions and Proof Rules

the same effect in our current semantic model, in which we only consider the ef-
fects of operations on the channel histories. Both operations result in the transferred
message being prefixed to the trace for the channel concerned.

Continuing to consider BUF1, we have shown above that:

Γ � (right!e→ BUF1) sat (right � 〈e〉̂le f t)∧ (|#〈e〉̂le f t−#right| ≤ 1)

where Γ is the definition of BUF1. Since e is not free in Γ , we can use the inference
rule ∀-introduction to deduce that:

Γ � ∀v ∈ N0 · ((right!v→ BUF1)
sat (right � 〈v〉̂le f t)∧ (|#〈v〉̂le f t−#right| ≤ 1))

Taking the assertion on the right hand side of sat as Rc
〈v〉̂c, we find that the assertion

R〈〉 is:

(〈〉� 〈〉)∧ (|#〈〉−#〈〉| ≤ 1)

which is trivially true. We have therefore demonstrated the validity of the two sub-
sidiary inferences of the Input inference rule, and can then infer that:

Γ � (le f t?x : N0 → (right!x→ BUF1))
sat (right � le f t)∧ (|#le f t−#right| ≤ 1)

The next two rules deal with alternatives:

8. Union
Γ � P sat R, Q sat R

Γ � (P�Q) sat R

9. Alternative
Γ � P sat R, Q sat R

Γ � (P[]Q) sat R

With our current semantic model, we are unable to distinguish between alternatives
of type (P�Q) and alternatives of type (P[]Q). In both cases, the composed process
can only satisfy an invariant if both component processes satisfy it.

For parallelism without channel synchronisation, we have the rule:

10. Interleaving
Γ � P sat R, Q sat S

Γ � (P ||| Q) sat (R∧S)

The reasoning behind this rule is that if R is invariantly true of P, and S is invariantly
true of Q, then when both P and Q run in parallel, both invariants must be true. For
this rule to be sound, R and S must refer to disjoint sets of channels; this is ensured
if αcP∩αcQ = {}.

For parallelism with synchronisation over the events in common channels, we
apply essentially the same rule as Interleaving. However, since there are now com-
mon channels in P and Q, the assertions R and S will contain common variables,
reflecting the logical coupling between the behaviours of the two processes.

2.2 Channel History Semantics 33

11. Parallelism
Γ � P sat R, Q sat S

Γ � (P ‖ Q) sat (R∧S)

An example will be given below, when we have considered Renaming.
It is useful to consider process definitions as being parameterised with the chan-

nel names as parameters. By suitable renaming, we can then use the same definition
(and suitably modified assertions) in a number of different situations. A good exam-
ple of this appears when we wish to connect two processes together via a common
channel. The channels to be joined together must then be renamed to have the same
identity. The relevant inference rule is:

12. Renaming
Γ � P sat Rd

c

Γ � P[d/c] sat R

As an example, consider the two-place buffer defined by the expression:

BUF2 def= (BUF1[c/right] ‖{c} BUF1[c/le f t])

This describes a buffer which behaves as two processes of type BUF1, connected
so that the channel right in the left hand process becomes common with the channel
le f t in the right hand process. The common channel is renamed c, as illustrated in
Figure 2.6(b).

Fig. 2.6 Channel renaming

(a)

left rightc

left right left right
BUF1 BUF1

BUF1BUF1(b)

Let us first take the definition of BUF1 as our basic assumption, Γ . We can then
use the inference rule Renaming to develop the inferences:

Γ � BUF1[c/right] sat (c � le f t)∧ (|#le f t−#c| ≤ 1)

and

Γ � BUF1[c/le f t] sat (right � c)∧ (|#c−#right| ≤ 1)

The rule Parallelism can then be used to deduce that:

Γ � (BUF1[c/right] ‖{c} BUF1[c/le f t])
sat ((right � c)∧ (|#c−#right| ≤ 1))∧

((c � le f t)∧ (|#le f t−#c| ≤ 1))

and this in turn can, by application of the rule Consequence, be shown to lead to:

Γ � (BUF1[c/right] ‖{c} BUF1[c/le f t])
sat (right � le f t)∧ (|#le f t−#right| ≤ 2)

34 2 CSP Descriptions and Proof Rules

in accordance with our expectations of a two-place buffer!
Connection of two processes via a common channel does not automatically hide

the activity on that channel, so if we wish to make it invisible to the environment,
we need some rule for deducing what the externally observable behaviour becomes
if a particular channel is hidden:

13. Hiding
Γ � P sat R

Γ � (P\L) sat ∃L ·R

where L denotes a set of channels, say {c1,c2, . . . ,cn}, whose communications are to
be hidden, and ∃LR means ∃past(c1), past(c2), . . . , past(cn) ·R, i.e. for each channel
ci in L, it is possible to find a channel history past(ci) such that R holds. A useful
case is where R is independent of the hidden channels. For example, we see that the
final assertion developed for the two-place buffer BUF2 above is independent of c,
so it must also be true for the process (BUF2\{c}), illustrated in Figure 2.7.

Fig. 2.7 Channel hiding and
piping

c
BUF1BUF1

left right

The type of system in which two processes are joined in series, with the ‘right
hand’ channel fed into the ‘left hand’ channel of the next (as in BUF2) and then hid-
den from the environment, is so common that a special notation is often introduced
for denoting it. We define the new process operator� as follows:

P� Q def= (P[t/right] ‖ Q[t/le f t])\{t}

This operator is usually known as the piping or chaining operator. It is an associa-
tive operator, which has important implications for its use in describing protocol
systems, as we shall discuss in the next chapter. The proof rule for this operator is:

14. Piping
Γ � P sat R, Q sat S

Γ � (P� Q) sat ∃t ·R[t/right]∧S[t/le f t]

To deal with processes whose behaviour depends on some Boolean condition we
need the rule:

15. Condition
Γ � P sat (b⇒ R); Γ � Q sat (¬b⇒ R)

Γ � (if b then P else Q) sat R

This expresses the obvious fact that the conditional (if b then P else Q) will have
invariant R if the then-branch of the conditional has this invariant when b is true,
and the else-branch of the conditional has this invariant when b is false.

The final inference rule which we shall consider is used to deal with recursively
defined processes:

2.3 Failure Semantics 35

16. Recursion
Γ � R〈〉; Γ ,(p sat R) � P sat R

Γ ,(p def= P) � p sat R

where it is assumed that the process expression P is a function of p. Note that this
rule requires the validity of two subsidiary inferences in order to demonstrate that
p sat R. For a simple example, let us return to the one-place buffer. This is defined
by (BUF1 def= P), where P is given by:

(le f t?x : N0 → (right!x→ BUF1))

We wish to show that BUF1 sat R, where R is the assertion:

(right � le f t)∧ (|#le f t−#right| ≤ 1)

The first subsidiary inference requires the truth of R〈〉, which as we have seen before
is trivially true. For the second subsidiary inference, we assume that BUF1 sat R –
what we want to prove – and then need to show that P sat R. This has already been
shown above, but to illustrate the style of a complete proof, we collect up all its steps
and add annotations explaining the results and inference rules used in each step, as
follows:

1. ⇒ {Definitions of �, #}
Γ � (〈〉� 〈〉) ∧ (|#〈〉−#〈〉| ≤ 1)

2. ⇒ {Assumption}
Γ � BUF1 sat (right � le f t)∧ (|#le f t−#right| ≤ 1)

3. ⇒ {2, definitions of �, #}
Γ � BUF1 sat (〈e〉̂right � 〈e〉̂le f t)∧ (|#〈e〉̂le f t−#〈e〉̂right|≤1)

4. ⇒ {1, 3, Output}
Γ � (right!e→BUF1) sat (right � 〈e〉̂le f t)∧(|#〈e〉̂le f t−#right|≤1)

5. ⇒ {4, ∀-introduction}
Γ � ∀v ∈ N0 · ((right!v→ BUF1)

sat (right �〈v〉̂le f t)∧(|#〈v〉̂le f t−#right|≤1))
6. ⇒ {1, 5, Input}

Γ � (le f t?x : N0 → (right!x→ BUF1))
sat (right � le f t)∧ (|#le f t−#right| ≤ 1))

7. ⇒ {1, 6, Recursion}
Γ ,(BUF1 def= (le f t?x : N0 → (right!x→ BUF1))) � BUF1

sat (right � le f t)∧ (|#le f t−#right| ≤ 1))

Thus we can validly infer that BUF1 sat R, as required.

2.3 Failure Semantics

As previously noted, semantic models based solely on the use of channel histories
do not deal successfully with many aspects of the behaviour of systems of processes.

36 2 CSP Descriptions and Proof Rules

A particular problem is that the process defined by P def= STOP satisfies the spec-
ification P sat R, for any R which is satisfiable for the empty trace, i.e. such that
R〈〉 holds, since the history of the deadlocked process is 〈〉. This is, to put it mildly,
inconvenient.

In order to be able to distinguish between useful solutions to a specification and
deadlocked solutions, we need a more complex semantic model, in which we can
not only express the idea that a process has a particular channel history, but also
the idea that the process is currently unable to take part in certain communication
events. This is often called a failure model for the semantics. Failure models can
describe both liveness and safety properties of a system of processes, and are the
basis of most recent work using CSP, including the very influential paper “A Theory
of Communicating Sequential Processes” (TCSP) [19] and Hoare’s 1985 version of
CSP [64].

As in the case of the channel history semantics, we shall describe this model in
terms of a set of inference rules which can be used to prove properties of systems.
These rules are for process P now expressed in terms of four functions:

initials(P) defined as before by:

initials(P) def= {a ∈ A | ∃Q ·P a−→ Q}

traces(P) defined as before by:

traces(P) def= {s ∈ A∗ | ∃Q ·P s=⇒ Q}

refusals(P) defined by:

re f usals(P) def= {X | f inite(X) ∧ X ⊆ αP

∧∃Q · (P 〈〉
=⇒ Q∧ (X ∩ initials(Q)) = {})}

A refusal set of P is the set of events which P will not take part in when placed in
a given environment. re f usals(P) is thus the set of all refusal sets of P. It follows
from the definition that:

1. {} ∈ re f usals(P)
2. (X ∪Y) ∈ re f usals(P) ⇒ X ∈ re f usals(P)
3. X ∈ re f usals(P) ⇒ (X ∪{a}) ∈ re f usals(P)∨a ∈ initials(P)

This last property states that an event is either possible as an initial event or it
must be in a refusal set for P. As examples of refusal sets, we have:

re f usals(STOPA) = {X | X ⊆ A}
re f usals(a→ P) = {X | X ⊆ (αP−{a})}
re f usals(P[]Q) = re f usals(P)∩ re f usals(Q)
re f usals(P�Q) = re f usals(P)∪ re f usals(Q)

failures(P) defined by:

2.3 Failure Semantics 37

f ailures(P) def= {(s,X) | ∃Q ·P s=⇒ Q ∧ X ∈ re f usals(Q)}

In other words, a failure of P is a pair, (s,X), such that P can take part in the
events of the trace s, and will then refuse the events in the refusal set X . It follows
from this definition that, if F

def= f ailures(P):

1. (〈〉,{}) ∈F
2. (s t̂,X) ∈F ⇒ (s,{}) ∈F
3. (s,Y) ∈F ∧X ⊆ Y ⇒ (s,X) ∈F
4. (s,X) ∈F ∧a ∈ αP ⇒ (s,X ∪{a}) ∈F ∨ (ŝ〈a〉,{}) ∈F

In this semantic model, a process is often identified with its failures; in other
words, we say that a process ‘is’ its failure set, and that two processes with iden-
tical failure sets are identical.

As in the channel history model, a specification of the form

P sat R

means that R is true before and after every event in which the process described by
P can take part. In particular, we expect R to be true of all traces and refusals of P.
Thus R is in general a function of the traces and refusals of P, which we can denote
R(tr,re f), and it will be the case that:

∀tr,re f · tr ∈ traces(P)∧ (∃Q ·P tr=⇒ Q∧ re f ∈ re f usals(Q))
⇒ R(tr,re f)

The inference rules for this model, which should be compared with those for
‘pure’ channel history semantics, are as follows. The first four rules are unchanged
from before:

1. ∀∀∀-introduction
Γ � R

Γ � ∀x ∈M ·R
where x is not free in Γ .

2. Triviality
Γ � T

Γ � P sat T

3. Consequence
Γ � P sat R, R⇒ S

Γ � P sat S

4. Conjunction
Γ � P sat R, P sat S

Γ � P sat (R∧S)

Let R〈〉,B denote an assertion derived from R by replacing each channel history
by the empty trace, 〈〉, and each refusal set by the set B. Then we can formulate the
inference rule:

38 2 CSP Descriptions and Proof Rules

5. Emptiness
Γ � ∀B⊆ A ·R〈〉,B
Γ � STOPA sat R

We note that the process STOPA now only satisfies a specification if every subset of
A will be refused when the channel histories are all empty. Since the subset can be
chosen to be the entire alphabet A, the specification of STOP is much stronger than
before.

For the next two rules, we use the fact that communication of a value e on channel
c can only occur if re f usals(P) does not contain c.e.

6. Output
Γ � ∀B⊆ αP−{c.e} ·R〈〉,B, P sat Rc

〈e〉̂c

Γ � (c!e→ P) sat R

This follows from the results that:

traces(c!e→ P) = {〈〉}∪{〈c.e〉 t̂ | t ∈ traces(P)}
re f usals(c!e→ P) = {X | X ⊆ (αP−{c.e})}

The following rule applies correspondingly to input communications:

7. Input
Γ � ∀v ∈M · (∀B⊆ αP−{c.v} ·R〈〉,B, P[v/x] sat Rc

〈v〉̂c)

Γ � (c?x : M → P) sat R

(It is here assumed that v does not appear free in P, R or c.)
The rule for internal non-determinism is unchanged from before:

8. Union
Γ � P sat R, Q sat R

Γ � (P�Q) sat R

With our new semantic model, however, we are able to distinguish alternatives of
type (P[]Q) from alternatives of type (P�Q). As pointed out in exercise 2, even
a simple process of the type (P�Q) can deadlock on its first step if placed in a
suitable environment, whereas its sets of possible traces are indistinguishable from
those of (P[]Q). For external non-determinism, we now have the rule:

9. Alternative
Γ � P sat R, Q sat R,(R〈〉,X ∧R〈〉,Y ⇒ R〈〉,X∩Y)

Γ � (P[]Q) sat R

In this case, the composed process can only satisfy an invariant if both component
processes satisfy it, and if their refusal sets match the invariant. In particular, before
any communication has occurred (i.e. when their traces are empty), a set is refused
by the composed process only if it is refused both by P and Q.

For parallelism without channel synchronisation, we still have the rule:

10. Interleaving
Γ � P sat R, Q sat S

Γ � (P ||| Q) sat (R∧S)

2.3 Failure Semantics 39

The reasoning behind this rule is still that if R is invariantly true of P, and S is
invariantly true of Q, then when both P and Q run in parallel, both invariants must
be true. Again, R and S must refer to disjoint sets of channels, which is ensured if
αcP∩αcQ = {}.

For parallelism with synchronisation over the events in common channels, how-
ever, we now have:

11. Parallelism
Γ � P sat R(tr,re f), Q sat S(tr,re f)

Γ � (P ‖ Q) sat ∃V,W · (R(tr � αP,V)
∧S(tr � αQ,W)
∧ (re f = V ∪W))

This reflects the fact that the refusal set of the composed process is the union of the
refusal sets of the two processes P and Q.

The rule for renaming is unaltered from before:

12. Renaming
Γ � P sat Rd

c

Γ � P[d/c] sat R

The rule for hiding, on the other hand, requires some thought, since a system of
processes which are engaged in hidden internal communication is not deadlocked.
However, such a system is not stable, in the sense of being able to offer a well-
defined response to the environment. We can therefore not insist that it obeys a spec-
ification with respect to its externally observable behaviour. As an example, consider
the process BUF2 defined on page 33. When its left-hand component process BUF1
has just accepted one message from the environment, BUF2 is only capable of in-
ternal communication (passing the message between the two BUF1 processes), and
it obeys the assertion:

re f usals(BUF2) = {le f t,right}

which is not in accordance with any reasonable specification for a buffer. We there-
fore require that the specification only has to be obeyed when the composed process
is in a stable state – that is to say, when no internal communication can take place.
This leads to the inference rule:

13. Hiding
Γ � P sat R(tr,re f)

Γ � (P\L) sat ∃s ·R(s,re f ∪L)∧ s � (αcP−L) = tr

where L denotes a set of channels whose communications are to be hidden. It can
be shown that this rule leads to a contradiction if the internal communication never
terminates, and a subsidiary condition for its use must thus be that this state of affairs
(known as livelock or divergence) cannot occur. A more correct rule is thus:

13’. Hiding
Γ � P sat R(tr,re f)∧ (∀c ∈ L ·#past(c)≤ fc(past(d) . . . past(z))

Γ � (P\L) sat ∃s ·R(s,re f ∪L)∧ s � (αcP−L) = tr

40 2 CSP Descriptions and Proof Rules

where channels d . . .z 	∈ L, and fc is some finite-valued function from channel sets
to natural numbers. Further discussion of this point can be found in [63].

The rules for piping and for conditional constructions are unchanged from before:

14. Piping
Γ � P sat R, Q sat S

Γ � (P� Q) sat ∃t ·R[t/right]∧S[t/le f t]

15. Condition
Γ � P sat (b⇒ R); Γ � Q sat (¬b⇒ R)

Γ � (if b then P else Q) sat R

The inference rule for recursively defined processes is, however, considerably
modified from before, for similar reasons to those presented in our discussion of
hiding. The rule becomes:

16. Recursion
Γ � R(0); Γ ,∀n · (p sat R(n)) � P sat R(n+1)

Γ ,(p def= P) � p sat ∀n ·R(n)

where it is assumed that the process expression P is a function of p, and the notation
R(n) is a predicate containing the variable n, which ranges over the natural numbers
0,1,2, Note that this rule again requires the validity of two subsidiary inferences
in order to demonstrate that p sat R. To avoid livelock, it is a requirement that in the
definition P, p is externally guarded (i.e. with a prefix which requires cooperation
from the environment).

Further reading

The notation which we follow in these notes is as far as practicable that of Hoare
in his 1985 book on CSP [64]. This represents the culmination of a line of devel-
opment starting with Hoare’s original presentation of CSP in his well-known paper
from 1978 [62]. A channel history semantics for CSP first appeared in “Partial Cor-
rectness of Communicating Processes and Protocols” [128], where its use for prov-
ing correctness of protocols was demonstrated. Failure semantics were introduced
in [63] and [19]. Note that these works all use slightly differing notations! Roscoe’s
book “The Theory and Practice of Concurrency” [111] gives a more modern pre-
sentation of CSP and its uses.

There are many other specification languages based on similar principles: de-
scription of systems as processes which interact by synchronised communication,
and for which an algebra of processes can be defined. Two important examples are
LOTOS [17,156], which is a language developed within ISO for specification of cm-
munication services and protocols, and CCS, originally proposed by Milner in his

Exercises 41

monograph “A Calculus of Communicating Systems” [94], and further developed
in [95].

Failure semantics is an improvement on plain channel history semantics, in the
sense that it enables us to distinguish between processes which have the same be-
haviour with respect to traces, but which differ with respect to refusals. However,
both these semantic models are just two examples from a long series of models
which could be applied to describing the behaviour of distributed systems. A more
detailed and systematic discussion of further possibilities can be found in [102].

Exercises

2.1. Given the definitions on page 12, what is the alphabet of VMCT? of DEMON?
of VMDEMON?

Describe the behaviour of the parallel composition of GRCUST with VMDEMON
with synchronisation over the event set {coin, to f f ee,choc}.

2.2. Given the processes P def= (x→ P) and Q def= (y→ Q), describe the difference
between:

(P[]Q) ‖ P and (P�Q) ‖ P

a) in terms of their possible traces and b) in terms of their deadlock behaviour.

2.3. Use the process algebra for CSP and the definitions on page 12 to demonstrate
the result (previously stated without proof) that:

V MDEMON = (coin→(V MDEMON
�(V MDEMON[]to f f ee→V MDEMON)))

2.4. Describe the behaviour of (S ‖ T IMER)\{up}, where:

S def=(user?y : M → QT [y])

QT [x : M] def=(wire!x→ (up!SET→(wire?a : {ACK}→ (up!RESET→ S)
[]wire?a : {NACK}→ (up!RESET→ QT [x])
[]up?t : {TIMEOUT}→ QT [x])))

Assume that T IMER is as defined on page 23, that αcS = {up,wire,user} and
αcT IMER = {up}.

2.5. ProcessV MCT ′ in Figure 2.5 is a concretisation of processV MCT in Figure 2.3,
in which the abstract events of process V MCT have been replaced by communica-
tion events which are more directly related to the informal description of the vending
machine concerned. Give corresponding concretisations in terms of communication
events of the processes V MBREAK2, GRCUST , V MFAULTY and V MDEMON
from Figure 2.3.

42 2 CSP Descriptions and Proof Rules

2.6. Give the definition of a process E which inputs a stream of bits, and outputs
them encoded in Manchester encoding, where each 1-bit is encoded as the sequence
of values 〈1,0〉, and each 0-bit as 〈0,1〉. Then give a definition of a decoder process,
D, which inputs a pair of values in {1,0}, and outputs the bit value to which the pair
corresponds. If the pair of values is not valid, the decoder stops.

2.7. Give the definition of a process MULT which accepts on its input channel c
a potentially endless series of digits of a natural number, C, in some (pre-defined)
base B, least-significant digit first, and outputs on channel d a series of digits which
represent the product of C with a fixed multiplier digit, M ∈ [0 . . .(B− 1)]. The
digits output via d are to be output with the least possible delay. You may assume
that the processor which MULT runs on is able to perform simple integer arithmetic
in base B.

(HINT: Try to parameterise the process using the carry from the previous multi-
plication of M with a digit of C as parameter.)

2.8. Develop your solution to the previous exercise further, so that you are able to
multiply C by a multi-digit multiplier M[1] . . .M[n].

This requires n processes, which communicate the partial products to one an-
other. (It also requires some thought!)

2.9. An alternative definition of a two-position buffer to the one given on page 33
is:

BUF2 def= (BUF1� BUF1)

Show by using the rule Piping that this satisfies the specification:

BUF2 sat (right � le f t)∧ (|#le f t−#right| ≤ 2)

2.10. An unbounded buffer is defined by:

BUF def= (le f t?x : N0 → (BUF [c/right] ‖{c} (right!x→ BUF1)[c/le f t])\{c})

Show that this obeys the specification (BUF sat (right � le f t)).

2.11. Which assertions does the process T IMER defined on page 23 have as invari-
ants? Formulate as many non-trivial ones as possible, and discuss their significance
in relation to the supposed use of T IMER to provide a timeout mechanism for other
processes, such as QT .

2.12. Use the process algebra of CSP to demonstrate that the following rules apply
to the piping operator,�:

Exercises 43

P� (Q� R) = (P� Q)� R
(right!v→ P)� (le f t?y : M → Q[y]) = P� Q[v]

(right!v→ P)� (right!w→ Q) = right!w→ ((right!v→ P)� Q)
(le f t?x : M → P[x])� (le f t?y : M → Q[y]) = le f t?x : M → (P[x]� (le f t?y : M → Q[y]))

(le f t?x : M → P[x])� (right!w→ Q) = (le f t?x : M → (P[x]� (right!w→ Q))
[]right!w→ ((le f t?x : M → P[x])� Q))

where M is an arbitrary domain of messages.

Chapter 3
Protocols and Services

“Elles is al owre labour lost...
If fals be the foundement.”

“Piers the Plowman”
William Langland.

The concept of an elementary communication in CSP is an abstraction of a particular
type of interaction between two processes. It is based on the idealisations that the
processes only take part in synchronised communication, and that communication
takes place over a perfect channel, which never loses or corrupts messages.

Real processes seldom, if ever, behave like this. So we need to be able to gen-
eralise the concept of an interaction to cover the non-ideal cases which turn up in
practice. We shall do this by stepwise refinement. The first step is to introduce the
concept of an interaction point. This is an abstraction of the ‘point’ at which a pair
of processes appear to communicate, when we consider the totality of their com-
munication with one another. In terms of their externally observable behaviour, we
restrict our observations to that part of the behaviour which concerns exactly the
two processes in question. This idea is illustrated in Figure 3.1.

�

�

�

�

Process A

�

�

�

�

Process BIAB

Fig. 3.1 Interaction point IAB between processes A and B

This is a severe abstraction, and to introduce more realism into it, we can as
our next step decompose the interaction point between the processes into a separate
process, whose behaviour seen from each of the original processes is the same as

45

46 3 Protocols and Services

the interaction point’s. This new process describes the interaction between the
processes in more detail, and is an abstraction of the Service offered to them by
the real communication system. This idea is illustrated in Figure 3.2.

�

�

�

�

Process A

�

�

�

�

Process B

�

�

�

�

Service (Process S)

IAS IBS

Fig. 3.2 Service between processes A and B

The processes A and B are commonly known as the Service Users. The interac-
tion points between the Service Users and the service S are in OSI parlance known
as Service Access Points, or SAPs for short. In Figure 3.2 they are denoted IAS and
IBS. To obtain a formal description and specification of the service, we shall model
the service S as a CSP process (of arbitrary complexity), and each SAP as a set of
CSP channels.

Note that in the figure only two users are shown – the simplest and commonest
case. More generally, services may serve N users. For OSI and similar data commu-
nication services, N must of course be at least two, but for some models of distrib-
uted operating systems and the like it is convenient to describe services which are
offered to a single user. The service is in such cases often denoted a server.

Whilst the concept of a service makes it possible to describe the interactions as
experienced by the users of the service, it does not describe how these interactions
actually come about. The service is a ‘black box’, whose internal workings the users
are unaware of. But, at any rate in a distributed system, the service must be provided
by interactions between processes which are in different locations. The interactions
in which they take part in their effort to provide the required service are described
by the Protocol for this service. A better view of the system as a whole is thus as
illustrated in Figure 3.3. We shall call the processes which interact to provide the
service Protocol Entities in accordance with OSI usage. Note that, as for the service
users, we only show two protocol entities, PA and PB, whereas in general there may
be a larger number of entities which cooperate to provide the service.

As the final step, we must recognise that the interaction IPA,PB between the pro-
tocol entities will itself be based on a service. This produces the process picture
illustrated in Figure 3.4.

For communication services, our formal description of this will be based on the
abstraction that the original service, S , between Process A and Process B is com-

3 Protocols and Services 47
�

�

�

�

Process A

�

�

�

�

Process B

�

�

�

�

�

�

�

�

�

�

�

�

Protocol
Entity

PA

Protocol
Entity

PB

IPA,PB

IAS IBS

Fig. 3.3 Protocol to provide a service between A and B

�

�

�

�

Process A

�

�

�

�

Process B

�

�

�

�

�

�

�

�

Protocol
Entity

PA

Protocol
Entity

PB�

�

�

�

Service SPA,PB

IAS IBS

Fig. 3.4 Protocol based on a service

posed from the protocol entities and the underlying service SPA,PB by piping:

S
def= PA�SPA,PB � PB

In many cases, the service SPA,PB will itself be composed from a set of protocol
entities and an underlying service, and so on, in accordance with the usual struc-
ture of layered architectures. It is interesting to note that, since the operator � is
associative, then a service definition:

Sn
def= (PAn � (PAn−1 �Sn−2 � PBn−1)� PBn)

can be rewritten as:

Sn
def= (PAn � PAn−1)�Sn−2 � (PBn−1 � PBn)

48 3 Protocols and Services

This second definition can be interpreted as viewing the service Sn as put together
from components (PAn � PAn−1) on the ‘A-side’ and components (PBn−1 � PBn)
on the ‘B-side’, together with the underlying service Sn−2. The equivalence of the
two definitions then means that the same effect is obtained by considering the ser-
vices in a layered manner (the first definition) as by considering all the entities on
each side of the underlying service as being grouped together. This is extremely con-
venient from the point of view of the implementor of the protocol, as it means that
the layered structure need not appear explicitly in the implementation in a particular
location.

It can be seen that the distinction between protocols and services is a somewhat
artificial one from an analytical point of view. Each new decomposition of the origi-
nal interaction introduces one or more new processes, which from a CSP viewpoint
are subordinate processes to the original, but in no other respect remarkable.

From a conceptual point of view, however, the distinction is extremely useful. If
we wish to discuss how the ‘users’ interact with a common intermediate process,
we consider this process as describing the Service. If we wish to consider how the
users interact with a set of intercommunicating underlying processes, then we con-
sider these underlying processes and their mutual interactions as defining a Protocol.
This allows us to introduce various levels of abstraction in our descriptions of com-
munication systems.

3.1 Providing a Service

The idea of using a protocol is to be able to offer a service, S ′, which is different
in some way from the service, S , which we have access to. Seen from a CSP view-
point, this means that the externally observable behaviour of the process S ′ differs
from that of S . Usually it is ‘better’ in some sense, either because it is resilient
to faults which may be produced by S , or because it offers new facilities of some
kind. Many people use the term Value-Added Service to describe this situation,
particularly in relation to the standard services offered by public communication
systems.

When we design a communication system to provide the service S ′, we can take
either a top-down or a bottom-up approach. In the top-down approach, we produce a
specification Spec(S ′) for S ′, and then develop a protocol using processes PA and
PB, which we hope can offer this service. From Spec(PA), Spec(PB) and Spec(S ′)
we then develop the required underlying service S . The requirement is:

Spec(S)∧Spec(PA)∧Spec(PB)⇒ Spec(S ′)

where

S ′ def= PA�S � PB

3.1 Providing a Service 49

Sender def= (SAPA?x : M →Q[x])

Q[x : M] def= (right!x→ (right?y : {ACK}→ Sender
[]right?y : {NACK}→ Q[x]))

Receiver def= (le f t?x : M → le f t!ACK→ SAPB!x→ Receiver
[]le f t?y : M ′ → le f t!NACK→ Receiver)

Fig. 3.5 Simple ACK/NACK protocol

True top-down development methodologies are not yet available for parallel sys-
tems, so in fact what we can do is determine the weakest specification – the so-called
weakest internal condition – which must be satisfied by S in order for Spec(S ′)
to be satisfied. Some examples of this technique can be found in [128]. It is espe-
cially useful if we wish to determine what minimum requirements the underlying
service, S , must satisfy, if we wish to use a certain protocol, < PA,PB >, to provide
a certain service, S ′.

In the bottom-up method, we start with a given underlying service, S , with spec-
ification Spec(S), and try to develop a protocol which together with S can offer
the desired service S ′. On the whole we shall follow this approach in this book. Let
us consider an example.

Suppose we have a medium which can corrupt messages. However, each message
sent via the medium contains a checksum, so that the process receiving the message
can detect the corruption. On the basis of the service offered by this medium, we
wish to build up a data transmission service which is correct in the sense that it
transmits messages between pairs of users without loss, without corruption and with
correct preservation of the order of the messages. A suitable specification is:

Specification 3.1 S ′ sat right � le f t

In other words, the sequence of messages received by the user on the right is an
initial segment of the sequence sent off by the user on the left.

The service offered by the medium can be described by the CSP processes:

Medium def= (MM |||MA)

MM def= (le f t?x : M →(right!x→MM
�right!y→MM))

MA def= (right?a : K → le f t!a→MA)

where y ∈M ′ and (M ′ ∩M) = {}, where M is the domain of correct messages,
while K = {ACK, NACK} is the domain of acknowledgments, which, as we see, are
in this example assumed never to get lost or corrupted.

The protocol which we shall use is the simple ACK/NACK protocol defined by
the two processes Sender and Receiver, shown in Figure 3.5. In rough terms, the
receiving protocol entity sends an ACK message back to the sending protocol entity
if it receives a correct message, and passes the correct message on to the user (via

50 3 Protocols and Services

the channel SAPB). If an incorrect message is received, the receiving entity sends a
NACK back to the sender and does not pass any message on to the user.

3.1.1 Proving the Protocol Correct

The service offered by the combination of the two protocol entities and the under-
lying service, Medium, is then given by:

S ′ def= Sender�Medium� Receiver

A diagrammatic representation of this is shown in Figure 3.6. We then wish to prove

Sender Receiver

MA

MM� �

Fig. 3.6 Configuration of S ′.

that:

S ′ sat SAPB � SAPA

To take account of the possible retransmissions of data, we follow Zhou and
Hoare [128] and introduce a filter function, f, of functionality ∗∗(M ∪M ′ ∪K)→
∗∗M , such that the value of f (s) is obtained from s by cancelling all occurrences of
ACK, and all consecutive pairs 〈x, NACK〉. For example:

f (〈x, NACK,y, ACK〉) = 〈y〉

and, more generally:

f (〈〉) = 〈〉
f (〈x〉) = 〈x〉
f (〈x〉̂〈ACK〉̂c) = 〈x〉̂ f (c)
f (〈x〉̂〈NACK〉̂c) = f (c)

where c (strictly, past(c)) is a sequence of messages on channel c. Note that f is a
strict, but not distributive function, in the sense defined in the previous chapter.

For the proof, we shall use Channel History semantics. We need to prove three
subsidiary assertions:

3.1 Providing a Service 51

Sender sat f (right) � SAPA (1)
Receiver sat SAPB � f (le f t) (2)
Medium sat le f t � K � right � K (3)

where c � K (strictly, past(c) � K) for a channel c means the channel history of c
restricted to those messages which are in the domain K.

Let us start with the proof of assertion (2). We take as assumption Γ 2 the defini-
tion of Receiver, and we then wish to prove:

Γ 2 � Receiver sat SAPB � f (le f t)

This requires the use of rule Recursion, where the assertion on the right of sat is R.
We give the proof as a numbered sequence of annotated inferences. Each annotation
indicates the assumptions for the proof step and the inference rule used to perform
the inference. For example: 4.⇒ {2, 3, Output} indicates that the conclusions of
steps 2 and 3 were used with rule Output to infer the conclusion of this step, which
is step 4. In this and the following proofs, the final conclusion is framed.

1. ⇒ {Definitions of �, f}
� 〈〉� f (〈〉)

2. ⇒ {Assumption, Definition of �, f}
Γ 2 � Receiver sat 〈x〉̂SAPB � f (〈x〉̂〈ACK〉̂le f t)

3. ⇒ {Definition of �, f}
� 〈〉� f (〈x〉̂〈ACK〉̂〈〉)

4. ⇒ {2, 3, Output}
Γ 2 � (SAPB!x→ Receiver) sat SAPB � f (〈x〉̂〈ACK〉̂le f t)

5. ⇒ {Definition of �}
� 〈〉� f (〈x〉)

6. ⇒ {4, 5, Output}
Γ 2 � (le f t!ACK → SAPB!x→ Receiver) sat SAPB � f (〈x〉̂le f t)

7. ⇒ {6, ∀-introduction}
Γ 2 � ∀v ∈M · (le f t!ACK→ SAPB!v→ Receiver)

sat SAPB � f (〈v〉̂le f t)
8. ⇒ {Definition of �, f}

� 〈〉� f (〈〉)
9. ⇒ {7, 8, Input}

Γ 2 � (le f t?x : M → le f t!ACK → SAPB!x→ Receiver)
sat SAPB � f (le f t)

10. ⇒ {Assumption, definition of f}
Γ 2 � Receiver sat SAPB � f (〈x〉̂〈NACK〉̂le f t)

11. ⇒ {Definitions of �, f}
� 〈〉� f (〈x〉̂〈〉)

12. ⇒ {10, 11, Output}
Γ 2 � (le f t!NACK → Receiver) sat SAPB � f (〈x〉̂le f t)

13. ⇒ {12, ∀-introduction}
Γ 2 � ∀v ∈M ′ · (le f t!NACK → Receiver) sat SAPB � f (〈v〉̂le f t)

52 3 Protocols and Services

14. ⇒ {Definitions of �, f}
� 〈〉� f (〈〉)

15. ⇒ {13, 14, Input}
Γ 2 � (le f t?y : M ′ → le f t!NACK → Receiver) sat SAPB � f (le f t)

16. ⇒ {9, 15, Alternative}
Γ 2 � (le f t?x : M → le f t!ACK → SAPB!x→ Receiver

[]le f t?y : M ′ → le f t!NACK → Receiver)
sat SAPB � f (le f t)

17. ⇒ {1, 16, Recursion}
Γ 2 � Receiver sat SAPB � f (le f t)

The proof of assertion (1) is somewhat more complicated. We follow the pro-
cedure suggested in Zhou and Hoare’s monograph, and take as assumption Γ 1 the
definitions of Receiver and Q. We then try to prove:

Γ 1 � Sender sat f (right) � SAPA, ∀x ∈M · (Q[x] sat f (right) � 〈x〉̂SAPA)

This consists of two subsidiary assertions, one for Sender and one for Q. The proof
of each of these requires us to use the rule Recursion, where the assertion on the
right of sat is R. The steps are as follows:

1. ⇒ {Definitions of �, f}
� 〈〉� f (〈〉)

2. ⇒ {Definitions of �, f , ∀-introduction}
� ∀x ∈M · (f (〈〉) � 〈x〉̂〈〉))

3. ⇒ {Definitions of �, f}
� f (〈〉) � 〈〉

4. ⇒ {Assumption for Sender, 3, Input}
Γ 1 � (SAPA?x : M → Q[x]) sat f (right) � SAPA

5. ⇒ {Assumption for Q}
Γ 1 � x ∈M ⇒ Q[x] sat f (right) � 〈x〉̂SAPA

6. ⇒ {5, Definition of Q}
Γ 1 � Q[x] sat f (right) � 〈x〉̂SAPA

7. ⇒ {Assumption for Sender, definitions of �, f}
Γ 1 � Sender sat f (〈x〉̂〈ACK〉̂right) � (〈x〉̂SAPA)

8. ⇒ {7, ∀-introduction}
Γ 1 � ∀v ∈ {ACK} · (Sender sat f (〈x〉̂〈v〉̂right) � (〈x〉̂SAPA))

9. ⇒ {6, definitions of �, f}
Γ 1 � Q[x] sat f (〈x〉̂〈NACK〉̂right) � 〈x〉̂SAPA

10. ⇒ {9, ∀-introduction}
Γ 1 � ∀v ∈ {NACK} · (Q[x] sat f (〈x〉̂〈v〉̂right) � 〈x〉̂SAPA

11. ⇒ {8, definition f , Input}
Γ 1 � (right?y : {ACK}→ Sender) sat f (〈x〉̂right) � 〈x〉̂SAPA

12. ⇒ {10, definition f , Input}
Γ 1 � (right?y : {NACK}→ Q[x]) sat f (〈x〉̂right) � 〈x〉̂SAPA

3.1 Providing a Service 53

13. ⇒ {11, 12, Alternative}
Γ 1 � (right?y : {ACK}→ Sender

[]right?y : {NACK}→ Q[x])
sat f (〈x〉̂right) � 〈x〉̂SAPA

14. ⇒ {Definitions of �, f}
� f (〈〉) � 〈x〉

15. ⇒ {13, 14, Output}
Γ 1 � (right!x→ (right?y : {ACK}→ Sender

[]right?y : {NACK}→ Q[x]))
sat f (right) � 〈x〉̂SAPA

16. ⇒ {15, ∀-introduction}
Γ 1�∀x∈M ·(right!x→ (right?y :{ACK}→ Sender

[]right?y : {NACK}→ Q[x])
sat f (right)�〈x〉̂SAPA)

17. ⇒ {2, 16, Recursion}
Γ 1 � ∀x ∈M · (Q[x] sat f (right) � 〈x〉̂SAPA)

18. ⇒ {3, 4, Recursion}
Γ 1 � Sender sat f (right) � SAPA

The proof that the process Medium satisfies assertion (3) above is very simple, as
we are only interested in considering the behaviour of the medium with respect to
transmission of acknowledgments. (With respect to other messages, the only thing
we can say is that the medium does not actually get messages to disappear, although
they may be corrupted.) We proceed as follows:

Take as assumption Γ 3 the definition of Medium, with the subsidiary assump-
tions Γ 4 the definition of MM, and Γ 5 the definition of MA. Then we wish to prove:

Γ 3 � (MM |||MA) sat (le f t � K � right � K)

We proceed as follows:

1. ⇒ {Assumptions, definition of �}
Γ 4 � (le f t � K = right � K = 〈〉)

2. ⇒ {1, definition of �, Triviality}
Γ 4 �MM sat le f t � K � right � K

3. ⇒ {Assumptions, definitions of �, �}
Γ 5 � 〈〉 � K � 〈〉 � K

4. ⇒ {Assumptions}
Γ 5 �MA sat le f t � K � right � K

5. ⇒ {4, Definition of �}
Γ 5 �MA sat 〈a〉̂le f t � K � 〈a〉̂right � K

6. ⇒ {Definition of �}
� 〈〉 � 〈a〉̂〈〉

7. ⇒ {5, 6, Output}
Γ 5 � (le f t!a : K →MA) sat le f t � K � 〈a〉̂right � K

8. ⇒ {7, ∀-introduction}
Γ 5 � ∀v ∈ K · (le f t!v→MA) sat le f t � K � 〈v〉̂right � K

9. ⇒ {Definitions of �, �}
� 〈〉 � K � 〈〉 � K

54 3 Protocols and Services

10. ⇒ {8, 9, Input}
Γ 5 � (right?a : K → le f t!a→MA) sat le f t � K � right � K

11. ⇒ {3, 10, Recursion}
Γ 5 �MA sat le f t � K � right � K

12. ⇒ {2, 11, Interleaving}
Γ 3 � (MM |||MA) sat le f t � K � right � K

Using the auxiliary assertions which we have now proved, we can prove the
desired assertion about the composed service S ′. It follows from the proof rule
Piping that:

(Sender�Medium� Receiver) sat (∃t· (∃s · (f (s) � SAPA
∧ (s � K � t � K))

∧SAPB � f (t))

And it then follows from the definition of f that SAPB � SAPA, as required.
Interestingly enough, the only requirement of the medium in this case is that it

does not lose acknowledgments. However, the proof is also based on the hidden
assumptions that:

1. Messages do not get totally lost, and
2. Some correct messages do in fact arrive at the receiver.

If these assumptions are not satisfied, the process S ′ will in case 1 go into deadlock.
In case 2 it will go into livelock and spend all its time sending incorrect messages
one way and NACK responses the other way.

3.1.2 Structuring your Proof

Many people find it difficult at first to carry out proofs like the ones shown here,
where there are many steps from the initial assumptions to the final conclusion.
Experience, of course, is always the best teacher, and by the time you have done all
the exercises in this book, you should be well on your way to understanding what
to do. A good piece of advice for beginners is to inspect the structure of the process
which you are trying to prove a property of. For example, if it is defined recursively,
then you should be trying to apply the inference rule for Recursion. Try to identify
the “variables” in the inference rule: What is R, what is P, what is p?

You may prefer to work backwards here, by a line of reasoning which goes some-
thing like “if I have to prove p sat R, and p is defined recursively via p def= P, then I
have to prove both R〈〉 and P sat R, where to prove the latter I am allowed to assume
that p sat R.” This shows you what you need to prove, and you can continue to work
backwards, step by step, until you reach something which is either trivially true or is
given by the definitions or assumptions. This proof strategy is often known as back-
ward proof, as opposed to the forward proof of which we have just presented two

3.2 Service Features 55

large examples. Obviously, by presenting the steps in reverse order, starting from
the definitions and assumptions, a backward proof can be presented as a forward
one.

Likewise, if the process which you want to prove has the form of an internal or
external choice, you will need to prove that the desired property holds for each of
these components. If the process has the form of two processes composed in parallel,
you can try to prove that each of them has the required property, say R, or you can
try to find two properties, say R1 and R2, such that R1 holds for one of the processes
and R2 for the other process, and where R = R1∧R2. If the process whose property is
to be proved starts with an input event, you will need to use the Input inference rule.
If it starts with an output event, you will need to use the Output inference rule. And
so on. The steps required in your proof are guided by the structure of the process
being considered. Try now to work back through the proofs of the previous section,
and see how this approach works.

3.2 Service Features

Let us at this stage consider what kinds of feature we might find desirable to
introduce into a service. Generally speaking, service features fall into two classes.
The first class is related to the kind of logical assumptions which we want to
be able to make concerning the data which are transferred. An example of this
might be the requirement that messages are always transferred to the receiver by
the service provider in the same order as they were supplied to the service provider
by the sender. If we cannot make this kind of assumption, many of our algorithms
will be much more complicated. Try to imagine a message handling system in which
the paragraphs of messages arrived in random order, for example! Luckily it is ex-
actly this type of feature which can be dealt with using the formal methods and
proof techniques which we have sketched in the previous section.

The other class of feature is more of a technical or economic nature, related to
the price or capacity of the communication system. For example, there may be re-
quirements for a particular throughput, a particular maximum time for transfer of a
message, or more generally for transfer of data at the ‘lowest possible’ price. Typi-
cally, formal proof techniques ignore this aspect of services, and the tools available
for analysing the properties of distributed systems in this respect come from the
areas of graph theory and queueing theory.

In the very nature of things, it is impossible to produce a complete list of service
features which might be required, but the following facilities are those used in the
OSI Basic Reference Model [133] and its addenda, and are certainly among the most
commonly found:

• Sequence preservation.
• Data Unit synchronisation
• Flow control.
• Freedom from error.

56 3 Protocols and Services

• Service reset.
• Connection establishment and release.
• Change of mode.
• Information about change of peer state.
• Expedited Data
• Security.

We shall look at these concepts in turn.

3.2.1 Sequence Preservation

This feature of a service corresponds to the property that the service provider
delivers messages in the same order as they are sent off. As we have already
seen, this property is susceptible to formal analysis, and corresponds to the simple
specification:

Specification 3.2 S sat received � sent

for the process S which represents the service.

3.2.2 Data Unit Synchronisation

In a service which offers this feature, there is a one-to-one correspondence between
the messages passed to the service for transmission and the messages delivered to
the receivers. In other words, each message supplied by a user for transmission will –
if it arrives at all – be delivered to the intended receiver(s) as a unit. Sometimes such
services are called message oriented services or block oriented services, as they
deliver blocks of data in their entirety.

A common alternative is for the service to be stream oriented. This means that
the boundaries between units of data supplied to the service are not necessarily
preserved when the data are delivered to the receiver: Data are regarded as making
up a (potentially endless) stream, which can be chopped up and delivered in units of
any convenient size. This is illustrated in Figure 3.7.

3.2.3 Flow Control

A service which offers flow control ensures that messages are not delivered faster
than the receiver can deal with them. This is equivalent to a requirement for syn-
chronisation through a finite buffer, with the same specification as above.

3.2 Service Features 57

1234512345 Service

12345 Service

Cut anywhere

Fig. 3.7 A block-oriented service (above) and a stream-oriented service (below).

3.2.4 Freedom from Error

An error-free service delivers the same messages as those which are sent off, without
corruption of any kind. The specification is the same as for sequence preservation.

When discussing errors, a simple classification scheme is useful. We base this on
a the idea that we have two users, a sender Us and a receiver Ur. The sender takes part
in a communication event es, and the receiver takes part in a communication event
er. Either of these events can (in a faulty system) be null, which we shall denote nil.
The semantics of such a null event are empty, in the sense that it represents the idea
that the process in question does not in fact take part in any event. The receiver’s
event results in his local message buffer, br, changing its contents from mr to m′r.
There are four basic possibilities:

1. In a fault-free communication, es = cs!ms, er = cr?br and m′r = ms.
2. If a message loss fault occurs, es = cs!ms, er = nil, and m′r = mr.
3. If a spurious message fault occurs, es = nil, er = cr?br and m′r =???.
4. If a message corruption fault occurs, es = cs!ms, er = cr?br and m′r 	= ms.

All other faults, such as duplication of messages or misdelivery, can be expressed
as combinations of these. Note that we use different channel names for the sender
and receiver communication events, reflecting the idea that these are the channels
through which the sender and receiver are connected to the possibly faulty service,
rather than to one another.

This classification is the basis of the OSI concept of residual error. In OSI par-
lance, messages passed to the service by the service users for transfer to other ser-
vice users are known as Service Data Units or SDUs. Given Ns SDUs sent off over
a period of time by a user A for transfer to user B, let us suppose that Na of these
arrive correctly, that Nl are lost, and that Nc arrive corrupted. Let us also suppose
that user B receives Nu spurious SDUs which have not been sent off by A (or anyone
else?) at all. It is here assumed that none of these errors are detected (and indicated
to the service user) by the service. The Residual Error Rate, RER, is then defined as

RER =
Nl +Nc +Nu

Ns +Nu

58 3 Protocols and Services

Note that these quantitative features of the service, although important in practical
situations, are not dealt with by our type of formal model.

The OSI concept of residual error is specifically restricted to those errors which
the service user does not get told about. This is in contrast to indicated errors, where
the service explicitly draws the user’s attention to the fact that an error has occurred.
This means that the user does not need to take special action (such as the introduc-
tion of redundancy into data) to detect such errors. Indicated errors are often related
to service features which permit users to reset the service to some standard state
(see next section). In general, the same classification of error types as above can be
used, although in practice message loss faults are by far the most common types of
indicated error.

3.2.5 Service Reset

Although well-behaved services operate indefinitely without ever stopping or being
restarted, practical considerations may in fact dictate that the service needs to be
set into a standard initial state from time to time. In OSI terms, this service feature
is known as a reset feature. A well-known example of a service with this type of
facility is the X.25 Packet Level (PLP) service.

Reset features are not pleasant to deal with from an analytical point of view, as
they generally give rise to loss of arbitrary amounts of data – typically, all those
messages which were in transit between service users at the time when the reset
feature was invoked. This is also quite difficult to model: the service must be ready
at all times to accept a reset request message from either user, and on receipt of this
message must abandon all messages currently being transmitted. Essentially, reset
features turn an otherwise reliable service into an unreliable one! A consequence of
this is, as we shall see in the next chapter, that protocols based on services with reset
facilities have to be constructed with special care.

3.2.6 Connection Establishment and Release

Many services require the users to establish a connection by setting up a logical
or physical channel before ‘real’ exchange of data can take place. The channel is
established by the exchange of particular types of message in a so-called connection
establishment phase of communication, before the ‘real’ data are exchanged in a
subsequent data transfer phase. This is illustrated in Figure 3.8.

The initial exchange enables the service users to establish their initial global state
before they get down to serious business, so to speak. In particular, the connection
establishment phase may be used to agree on some kind of parameters describing
the data transfer phase, thus freeing the service users of the need to send all con-
ceivable parameters with each individual data message. This can make the service

3.2 Service Features 59

Fig. 3.8 Phases of operation
of a connection

Connection
establishment

phase

Connection
release
phase

User B

User A
Time

Data transfer phase

more efficient, in the sense that repetitive transmission of this information can be
avoided. Examples of what might be agreed on are the service facilities to be avail-
able in the data transfer phase, the identities of the service users, the syntax of data,
the throughput and so on.

The values agreed for these parameters usually remain valid throughout the data
transfer phase, until the connection is broken and the channel released in a final
phase of the communication, known as the connection release phase. For an ideal
service offering connection establishment and release facilities, connection release
will always be voluntary (on the part of the users). An unreliable service may also
produce involuntary forms of connection release, known in OSI parlance as Provider
Aborts.

During the lifetime of the connection, which runs from the time when it is es-
tablished to the time when it is released, it makes sense to speak of the ordering of
messages sent from the source to the destination, as they pass along a single logical
channel. Thus the properties of sequence preservation, error control and so on are
only really meaningful in this mode of operation.

In OSI parlance this form of communication is known as connection-mode (or
connection-oriented) communication, in contrast to connectionless-mode (or just
connectionless) communication, where there is no logical relation expressed or im-
plied between consecutive elementary communications between pairs of users. A
number of other terms exist for the same thing, and are often found in the litera-
ture. In particular, connectionless-mode services are often known as datagram (or
just DG) services, and connection-mode services as virtual circuit (or VC) services.
Some people use the term ‘virtual circuit service’ in the special sense of an ideal,
error-free, sequence preserving service. However, if we need this Utopian concept
we shall call it a perfect virtual circuit service.

Obviously, a connectionless-mode service offers no facilities for connection es-
tablishment or release, and it is meaningless to consider sequence preservation or
loss of data as features of the service. A connectionless-mode service has no mem-
ory of previous messages sent – it is stateless – so essentially, the service offers a
facility for sending individual messages. A convenient model of this is that a new
CSP channel is used for every message exchanged.

A useful concept in this context is that of an instance of communication, which is
an OSI term defined as a logically related sequence of elementary communications.
In the case of connection-mode operation, an instance of communication comprises
all elementary communications from the initial exchange of messages to deal with

60 3 Protocols and Services

connection establishment to the final exchange during the release phase1. In the
case of connectionless-mode operation, an instance of communication comprises
the single exchange of a message between users which occurs when the service is
invoked.

3.2.7 Change of Mode

A service may offer a different mode of operation from the one offered by the ser-
vice on which it is based. Confining ourselves to OSI modes of operation, the most
important changes are those between:

• Connection and Connectionless modes.
• Point-to-point and Multi-peer modes.
• Simplex and Duplex modes.

Connection and Connectionless Modes

Given a connectionless-mode service, it is possible to build up a connection-mode
service by introducing suitable facilities for correlating messages sent off indepen-
dently of one another via what we can model as different logical channels. Details
will be given in the next chapter. Similarly, if a connection exists, it is possible
to consider the messages sent via it independently of one another, thus building a
connectionless-mode service on a connection-mode one.

Point-to-point and Multi-peer Modes

In the point-to-point mode of operation, two service users communicate with one
another through a physical or logical channel which connects them. In the multi-
peer mode, several users communicate with one another.

Multi-peer mode services are often termed broadcast services if all available
service users can receive a message sent by one of them, and multicast services if it
is possible for a sender to select a particular sub-set of users to receive a particular
message or messages. Occasionally the term inverse broadcast is used when a single
receiver can receive simultaneously from all the other service users; nobody seems
yet to have found a need for the term inverse multicast!

A great deal of confusion sometimes arises when multi-peer services are dis-
cussed because it is in practice clear that the sets of users involved in an instance of
multi-peer communication may vary with time. It is therefore useful to distinguish
between the following concepts:

1 This assumes, of course, that connection establishment is successful. In the case of failure, the
instance of communication ends when the attempt to establish the connection is aborted.

3.2 Service Features 61

The invoked group is that sub-set, I , of users which a user initiating an instance
of multi-peer communication wishes to communicate with. If U is the set of all
users, and i is the initiating user, then a broadcast service is characterised by
I = U −{i} (or possibly I = U , if the service is reflexive), while a multicast
service is characterised by I ⊆U .

The active group is that sub-set, A , of users which a user actually communicates
with. In general, A ⊆I .

A static group is a sub-set of users which does not alter with time during a single
instance of multi-peer communication.

A dynamic group is a sub-set of users which (can) alter with time during a single
instance of multi-peer communication.

Group integrity is a measure of the extent to which a group’s composition satis-
fies some previously agreed criterion. Practical possibilities for such a criterion
might, for example, be that particular members must be present, that a certain
number of members must be present, and so on.

These terms are illustrated in Figure 3.9. Many of the terms can be used in com-

Fig. 3.9 Groups in a multi-
peer service. The figure il-
lustrates a single instance of
communication, for which
user i is the initiator.

i
A

Multi−peer service

I

U

bination. Thus it is meaningful to speak of a connection-mode multi-peer service
supporting static invoked groups and dynamic active groups. This would mean that
users, once the connection had been established, could leave and re-enter the active
group. It must be assumed that the rules for group integrity have been agreed during
connection establishment, and that the connection will be released if the minimum
criterion cannot be met.

Not all combinations are meaningful, however. It makes no sense to talk about a
connectionless-mode multi-peer service with dynamic active group, for example, as
each instance of connectionless-mode communication only involves the transfer of
a single message.

When a service offers a point-to-point service, a multi-peer service can be built
up on top of it by using N separate transfers of messages to simulate a single trans-
fer to N destinations. Similarly, a point-to-point service can be implemented using
a multi-peer service by the introduction of suitable information to filter off the mes-
sages arriving at the (N-1) destinations which are not the intended ones. More details
of mechanisms for this purpose can be found in Chapter 5.

62 3 Protocols and Services

Simplex and Duplex

By simplex operation, we understand a mode of operation in which transfer of mes-
sages only occurs in one direction through a logical or physical channel. In duplex
operation, messages can pass in both directions. If they can pass in both directions
at once, we speak of full duplex operation; if in one direction at a time, half duplex
operation.

Plainly, two simplex-mode channels can be used to obtain the effect of duplex
operation, while use of a duplex service can be restricted to a single direction to
obtain a simplex mode of operation. More details of administrative mechanisms for
ensuring the correct implementation of the change of mode will be discussed in the
next chapter.

3.2.8 Information about Peer Change of State

A universal problem in distributed systems is that the processes in the system in
general do not have knowledge of the global state of the system at any instant.
To obtain some kind of view of the global state, they must deliberately exchange
information with one another. If their local state changes in a significant manner
(seen in relation to the task in hand), they may thus have a duty to inform others of
this change. The service may provide facilities for passing information of this kind,
independently of the stream of ‘real’ data.

Although they are usually treated separately, facilities for connection establish-
ment and release come into this category, and so do flow control facilities. Less
obvious examples include:

• The setting of marks in the stream of data to indicate particular points from which
the stream may be retransmitted if this turns out to be necessary (for example,
due to some error or due to lack of resources at the destination). In OSI parlance,
such marks are known as synchronisation points.

• Indication that the following data in the stream of data represent the values of
objects from some new universe of discourse, possibly with selection of a syntax
suited to their representation. In OSI parlance, this is known as context selection.

• Indication of the start of a commitment unit, by which we understand a unit of
data which must be transferred as a whole or not at all.

It is often convenient when the service offers this kind of feature if the exchange of
information between the two parties is explicitly confirmed. That is to say, the party
receiving the information explicitly sends some kind of acknowledgment back to the
sender of the information. This means that the sender does not just have to rely on
the reliability of the underlying service in order to be certain that those parties who
need to know in fact do know about the change of state. Use of confirmed services
for informing other parties about major changes of state is standard practice in OSI
operation.

3.2 Service Features 63

3.2.9 Expedited Data

Expedited data is an OSI term for data to be transferred with high priority. By defi-
nition, expedited data will arrive not later than ‘ordinary’ data sent subsequently to
the same destination, and may arrive before ordinary data sent to the same destina-
tion at an earlier instant of time. Note that this is not a guarantee that they will arrive
before ordinary data sent at the same time! The concept is illustrated in Figure 3.10.

Fig. 3.10 Expedited data
arrives at least as fast as
ordinary data sent at the same
time to the same destination

To model this, we can model the service as containing a queue for the messages
in transit, with the property that queue elements sent via the expedited data service
can overtake those sent via the normal service. Obviously, this is in conflict with the
concept of sequence preservation for messages sent between two service users, seen
from a universal point of view. But the individual services (normal and expedited)
may each possess the sequence preservation property when considered separately.

Although the OSI term is confined to a single high-priority service, the concept
can be generalised to cover arbitrary numbers of priority levels. This type of ser-
vice is commonly offered at the hardware level in Local Area Networks. Examples
are the ISO/IEEE Token Bus [153], which offers four levels of priority, and the
ISO/IEEE Token Ring [154], which offers eight levels.

3.2.10 Security

A secure service is one which prevents unauthorised persons from obtaining access
to data transferred by it. This means that data cannot be read or altered by parties
other than the intended sender and receiver(s). This is again not a concept which is
susceptible to modelling in terms of message exchanges via CSP channels, as these
are always secure in this sense. But it is a matter of extreme practical importance,
and a great deal of effort has been expended on developing methods to protect data
in transit from ‘intruders’.

Various types of security can be identified. A common classification is the one
given in Part 2 of the OSI Reference Model [134]:

64 3 Protocols and Services

Authentication: An authenticated service offers its users facilities for confirming
that the party which they are communicating with actually is the party that they
believe they are communicating with.

Data Confidentiality: A confidential service provides protection of data from
unauthorised disclosure. This protection may, for example, cover:

1. All data sent between users of the service,
2. Particular fields within data (for example, fields containing passwords or

keys),
3. Information about the amount of data traffic being transmitted.

Data Integrity: A service offering integrity takes measures to withstand active
attempts to modify data being passed via the service. As with confidentiality, all
data may be protected, or only selected fields.

Non-repudiation: A service with non-repudiation offers undeniable proof that
data have been sent or received by a particular service user. Non-repudiation
with proof of origin prevents the sender from falsely denying that it has sent data;
non-repudiation with proof of delivery prevents the receiver from falsely denying
that it has received data.

Security specialists outside the world of communication systems usually add the
property of Availability to this list. Availability refers to the ability of a service to be
available to its authorised users to the promised extent. This is obviously a quanti-
tative property of the service and therefore lies somewhat outside the scope of this
book. Lack of availability shows itself via so-called Denial of Service (DoS) phe-
nomena, where users are (to a greater or lesser degree) unable to use the service.
This may be due to poor design or the efforts of evil-minded intruders or a combi-
nation of the two.

Mechanisms for ensuring that a service offers the desired type of security will be
considered in Chapter 6.

3.3 OSI and Other Layered Architectures

The idea of using layered architectures, where each layer offers services for use by
active objects in the layer above, is a common one in communication systems – and
indeed in operating systems and other large system programs. The layered architec-
ture described in the OSI Basic Reference Model [133] is a particular example of
this, specifying which layers are conceptually to be found in a standard communi-
cation system, which services they conceptually offer, and which functions they are
expected to be able to perform in order to offer these services. The model prescribes
seven layers, arranged as shown in Figure 3.11.

It is important to understand that the model as such only concerns itself with
the architecture of communication systems on the conceptual level: it describes an
abstract architecture. In fact, the important features of the OSI Reference Model
are the layering principle and the well-defined notation which it introduces. That,

3.3 OSI and Other Layered Architectures 65

(Signalling on the physical medium)

erating presentation entities.

Transfer of data on an end−to−end basis, such that prop−
erties of the underlying network are hidden.

Transfer of data between systems connected by arbitrary
networks, possibly with sub−networks.

Transfer of data blocks between systems which are di−
rectly connected via a medium.

Direct support to application processes for various types
of distributed activity.

Transformation of data to a syntactic form acceptable to
the application entities using the service.

Transfer of physical data units (individual bits) between
systems which are directly connected via a medium.

(Synchronisation points, roll−back, token control of
dialogues)

(Routing, handling sub−networks, sequence control,
flow control)

(Framing, error control and recovery, sequence control,
flow control)

(Coordination of cooperating activities, file and job
transfer, electronic mail, ...)

(End−to−end sequence control, end−to−end error control
end−to−end flow control)

APPLICATION

PRESENTATION

SESSION

TRANSPORT

NETWORK

DATA LINK

PHYSICAL

PHYSICAL MEDIUM

(Character sets, data structures, ...)

Organisation and structuring of dialogies between coop−

Fig. 3.11 The OSI Reference Model’s seven layers.

for example, there are seven layers is less important. Indeed, the explanations given
for there being exactly seven layers are in general not serious technical reasons –
two of the commonest ones are that seven has from ancient times been regarded as
a mystical number, and that seven concepts are the most that the human brain can
deal with at one time.

In practice, there are several deviations from the 7-layered scheme. Firstly, it is
often convenient conceptually to divide some of the layers up into sub-layers. This
is especially common in:

• The Data Link layer, which in Local Area Networks (LANs) is traditionally di-
vided into two sub-layers: a Medium Access Control (MAC) sub-layer which is
specific to the type of LAN technology concerned, and which supports a Logical
Link Control (LLC) sub-layer to give a LAN-independent data link service from
the layer as a whole.

66 3 Protocols and Services

• The Network layer, which in complex networks made up from sub-networks can
conveniently be thought of as being divided into three sub-layers: a Sub-network
Access sub-layer, which is specific to the type of sub-network and which supports
a Sub-network Dependent Convergence sub-layer, which in turn supports a Sub-
network Independent Convergence sub-layer, to offer a sub-network independent
network service from the layer as a whole.

• The Application layer, which is put together from modules related to particular
application areas. Several of these modules are themselves built up in a layered
manner.

We shall look at some of these sub-layers in more detail in Chapters 9 and 10.
Secondly, in practical implementations, there is no requirement for there to be

seven clearly separated layers with clean interfaces between them. Often it is con-
venient to implement two or more layers together. For example:

• The Physical and Data Link layers can often be implemented in a single hardware
chip or chip set.

• The Presentation and Application layers can often be implemented together in
software. In fact during the development of the OSI Reference Model, there was
considerable discussion as to whether it was reasonable to separate the functions
of these two layers at all. You may still find confusion in the literature on this
point, usually with respect to which of these two layers particular functions be-
long in.
For example, it is a common mistake to believe that Virtual Terminal facilities
belong in the Presentation layer. A virtual terminal gives its user the illusion of
working on a terminal of a particular type. Thus an application program written
to use a particular type of terminal can be given the illusion that it is connected
to this type of terminal via the network, even though the physical terminal on
the other side of the network is actually quite different. You can debate with
yourself whether this is just a matter of converting the character set and other data
structures – in which case virtual terminals could be dealt with in the Presentation
layer – or whether more functionality than this is required, so that they belong in
the Application layer. The OSI answer is the Application layer.

Although the OSI Reference Model is a very general framework for describing com-
munication systems, which could in principle be realised by any protocols which
had the specified functionality, a particular set of standardised services and proto-
cols have been designed for this purpose. These are known as OSI protocols, and
originate from several standardisation organisations, particularly ISO, ITU-T (pre-
viously CCITT), IEC and IEEE (see Appendix B).

3.3.1 The Internet and Other Layered Architectures

The OSI Reference Model architecture is by no means the only layered architecture
which you may meet in communication systems. A particularly common alterna-

3.3 OSI and Other Layered Architectures 67

tive arrangement is to consider the three upper layers as one unit, an ‘Application-
oriented layer’ which depends directly on the Transport layer. A very well-known
example of this approach is seen in the Internet protocol suite, originally introduced
in the 1970’s for use in the DARPA Internet2 in USA, but now in almost univer-
sal use. Here, a whole series of application protocols – for example for file transfer
(FTP), electronic mail (SMTP), and handling virtual terminals (TELNET) – run di-
rectly over the Transport layer, which in such systems is based on Internet standard
protocols such as TCP or UDP. This architecture is illustrated in Figure 3.12.

APPLICATION

erties of the underlying network are hidden.

Transfer of data between systems connected by arbitrary
networks, possibly with sub−networks.

Transfer of data blocks between systems which are di−
rectly connected via a medium.

Transfer of physical data units (individual bits) between
systems which are directly connected via a medium.

Direct support to application processes for various types
of distributed activity.

(Framing, error control and recovery, sequence control,
flow control)

(File transfer, electronic mail, virtual terminals,
clock synchronisation, ...)

(End−to−end sequence control, end−to−end error control,
end−to−end flow control)

(Signalling on the physical medium)

(Routing, handling sub−networks)

TRANSPORT

NETWORK

DATA LINK

PHYSICAL

PHYSICAL MEDIUM

Transfer of data on an end−to−end basis, such that prop−

Fig. 3.12 The Internet layered architecture.

Several commercial manufacturers have also at various times developed products
which are structured in a similar way, although the protocols used are not OSI pro-
tocols, and the layers do not always correspond exactly to the OSI ones, especially
in the Session, Presentation and Application layers. Historically, IBM’s SNA and
Digital Equipment Corporation’s DECNET were examples of this approach.

Finally, in modern telecommunication systems, a somewhat different layered ar-
chitecture can be found in systems based on ATM (Asynchronous Transfer Mode), a
technology for supporting high-speed transfer of data over a local area or wide area
network. This architecture is described by the Broadband ISDN Protocol Reference

2 DARPA = Defense Advanced Research Projects Agency, run by the U.S. Department of Defense.
Several of the protocols have been standardised for military use, and they are therefore often known
as DoD protocols. The DARPA Internet is also known as ARPANET.

68 3 Protocols and Services

Model (B-ISDN PRM) [255]. In this model, although the layers roughly correspond
to the OSI RM, there are several important technical differences, especially with re-
spect to the way in which control and signalling information is transferred: In OSI,
it forms part of the ordinary data flow; in B-ISDN, it is transferred over a separate
connection.

Further reading

For a complete list of definitions of OSI terms regarding services and protocols,
there is no substitute for the OSI Basic Reference Model [133]. However, this is not
for the faint-hearted, as it contains very little tutorial matter. Several authors have
attempted to present its content in a more approachable form. A good introduction
is Walrand’s “Communication Networks: A First Course” [125], or Henshall and
Shaw’s “OSI Explained” [60], which pays particular attention to the upper layers of
the model.

Strictly speaking, reference [133] is the first part of a four-part standard. The
second, third and fourth parts respectively describe how security [134], naming and
addressing [135] and management [136] fit into the framework of the basic model,
and you will need to consult these parts of the standard if you want to know about
the OSI view of these subjects.

Proving properties of protocols and services can be approached in many ways.
Apart from the property-oriented approach used here, there are numerous techniques
for verification of protocols against a specification. For an alternative approach,
Holzmann’s “Design and Validation of Computer Protocols” [65] can be recom-
mended. Verification of protocols is very much an area of current research, and
the proceedings of the series of conferences on Protocol Specification, Testing and
Verification (PSTV) and on Formal Description Techniques (FORTE) are important
sources if you want to keep up to date with the latest results.

Exercises

3.1. Give descriptions in the form of CSP processes of services which respectively:

1. Introduce message loss faults into the stream of data which they are given to
transmit.

2. Introduce spurious message faults into the stream of data which they are given to
transmit.

3. Do not lose messages, but do not preserve the sequence of messages which they
are given to transmit.

3.2. Use Failure Semantics to analyse the deadlock properties of the composed
process S ′ defined in Section 3.1.

Exercises 69

3.3. The protocol entities in layer N of a layered system are described by the fol-
lowing pair of cooperating CSP processes, which describe a simple protocol which
multiplexes data from two channels onto a single underlying service:

S def= (SAPA[0]?x : M → right!(0,x)→ S

[]SAPA[1]?x : M → right!(1,x)→ S)

R def= (le f t?(k : {0,1},x : M)→ SAPB[k]!x→ R)

where S is on the transmitting side and R on the receiving side. M is here an arbi-
trary domain of messages.

Using channel history semantics, prove that:

S� R sat (SAPB[0] � SAPA[0])∧ (SAPB[1] � SAPA[1])

Hint: Introduce a filter function f , such that:

f (0,〈〉) = f (1,〈〉) = 〈〉
f (k,(k,x)̂s) = x̂ f (k,s), k = 0,1
f (k,(l,x)̂s) = f (k,s), k = 0,1; k 	= l

Then prove the following two lemmata:

S sat (f (k,right) � SAPA[k]), k = 0,1
R sat (SAPB[k] � f (k, le f t)), k = 0,1

and combine them to obtain the desired result.

3.4. Given two processes L and R, neither of which necessarily satisfies the buffer
specification right � le f t, it is possible that their combination L � R fulfils this
specification. Show that this is in fact the case if it is true that:

(L� R) = (le f t?x : M → (L� (right!x→ R)))

where M is an arbitrary domain of messages.

3.5. Given two processes:

L def= le f t?x : {0,1}→ right!x→ right!(1− x)→ L

R def= le f t?x : {0,1}→ le f t?z : {0,1}→ (if x = z then R else (right!x→ R))

Use the process algebra of CSP to demonstrate that:

(L� R) = (le f t?x : {0,1}→ (L� (right!x→ R)))

and thus, as shown in Exercise 3.4, that (L � R) fulfils the buffer specification
right � le f t.

Chapter 4
Basic Protocol Mechanisms

“Thro’ twenty posts of telegraph
They flashed a saucy message to and fro
Between the mimic stations.”

“The Princess”
Alfred Lord Tennyson.

In the previous chapter we presented a number of general aspects of services, which
it may be appropriate to provide in different contexts. Our view of a service as a
‘black box’, however, gave us no insight into how such so-called facilities might be
provided. Mechanisms for this purpose within a layer are in OSI parlance known as
functions of that layer.

In this chapter we shall look at those functions which are directly associated with
protocols in the traditional sense, i.e. sets of rules governing the exchange of data
between peer entities. A number of aspects of distributed systems are, however, not
easily incorporated into a discussion of such protocols. In particular, quite basic
questions, such as how the entities are identified and how the route to be followed
from one entity to another is determined, are ignored. We shall return to these ques-
tions, and the functions associated with them, in Chapter 7.

The functions which we shall consider in this chapter are:

• Sequence control and error control.
• Flow control.
• Indication of change of peer state.
• Change of service mode.
• Multiplexing and splitting.
• Segmentation and reassembly.
• Prioritisation.

We shall consider them in as general manner as possible, and try to relate them to the
OSI concepts of layer function to be found in the OSI Reference Model [133] and
related documents. In the following chapters we shall return to the special problems
associated with the provision of a multi-peer service and with the provision of a
secure service.

71

72 4 Basic Protocol Mechanisms

(N)-PCI

(N)-PCI

(N)-SDU

(N+1)-PDU

(N)-SDU

(N)-PDU

(N)-SAP

LAYER (N+1)

LAYER (N)

via (N)-Protocol

transmission

Fig. 4.1 Service and Protocol Data Units

OSI notation will be used as far as possible. Thus we shall relate our discussion to
the (N)-Service, i.e. the service provided by the N’th layer in a layered architecture,
and shall refer to the users of the service as (N)-Service-Users (or just (N)-Users),
which of course lie in the (N+1)’st layer. The channels via which the (N)-Users
interact with the (N)-Service will be referred to as (N)-service-access-points or (N)-
SAPs, and the portions of data which these users send via the service as (N)-service-
data-units or (N)-SDUs.

When the protocol entities within the (N)-layer communicate with one another
with a view to providing the service, they will be said to exchange (N)-Protocol-
Data-Units, (or just (N)-PDUs). In general, these PDUs may contain portions of data
from zero, one or more (N)-SDUs, together with control information required for
the execution of the protocol, (N)-Protocol-Control-Information (or just (N)-PCI).
This is often illustrated by the diagram shown in Figure 4.1. This PCI (and indeed
the entire working of the (N)-Protocol) is invisible to the users of the (N)-Service –
although some components of it, such as addresses, may have to be provided by the
user together with the SDU.

The figure shows a simple case where a single (N)-SDU is embedded into a
single (N)-PDU for transmission. In more complex cases, several (N)-SDUs may be
embedded into a single (N)-PDU (a technique known as packing), or a single (N)-
SDU may be divided into several (N)-PDUs for transmission. This latter technique
is known as segmentation. What happens at the receiver depends on the degree of
data unit synchronisation required from the service. Standard OSI data transmission
services are block oriented, which means that each (N)-SDU supplied by the sending
(N)-user is delivered as a unit to the receiving (N)-user. In a service which is stream
oriented, as is the case for many Internet services, the data can be delivered to the
receiver in units of any convenient size, not necessarily related in any way to the
sizes of the units supplied by the sender.

4.1 Sequence Control and Error Control 73

When discussing the interactions of the protocol entities, it will sometimes be
convenient to distinguish between PDUs on the basis of their types. In particular, the
principal function of some PDUs is to carry SDUs supplied by the service users; we
shall denote these data-PDUs. Other PDUs carry only acknowledgments of receipt;
we shall denote these ack-PDUs or just acknowledgments.

4.1 Sequence Control and Error Control

The purpose of these functions is to provide the service features of sequence preser-
vation and freedom from error. Although mechanisms for sequence control do not
necessarily ensure complete error control or vice versa, they are closely interrelated,
and can conveniently be considered together.

The basic mechanism for sequence control is a numbering scheme for the mes-
sages passed along the logical channel between the users of the service. The num-
bers are, of course invisible to the user, and are part of the PCI. Consecutive natural
numbers starting from some mutually agreed starting value are an obvious choice.
The receiving (N)-entity must check that each (N)-PDU received bears the next
number in the agreed sequence, and must take some suitable action if this is not the
case.

A numbering scheme also enables the receiving entity to check for lost or dupli-
cated PDUs, as well as those which arrive out of sequence. In fact, the entity cannot
tell the difference between lost and out-of-sequence PDUs, since it cannot foresee
whether the missing PDU will turn up later or not. (If it could, we wouldn’t need
the protocol!)

4.1.1 Corruption Control

Numbering schemes can not, however, protect against corrupted PDUs, and control
of this type of error requires the use of another technique entirely. The traditional
mechanism is to use a checksum or similar error-detecting code. The general prin-
ciple is to add, say, n− k bits of extra data (the ‘checksum bits’) to each block of,
say, k bits of data (the ‘message’), such that correct blocks of n bits satisfy a certain
predicate, often called the checksum relation, whereas corrupt blocks in general do
not satisfy this predicate.

How good the code is at distinguishing correct blocks from corrupt ones depends
on the complexity of the predicate, and thus on the rule used to determine the n− k
checksum bits. However, even the most advanced codes in current use will fail if
there are a sufficiently large number of errors in each block, as a block with suffi-
ciently many bit errors can come to look like (another) correct block. The minimum
number of bit errors required to transform a correct block into another apparently
correct block is a property of the code known as its minimum Hamming distance.

74 4 Basic Protocol Mechanisms

Well-known error-detecting codes used in data transmission systems are the poly-
nomial block codes (in this context also known as Cyclic Redundancy Check or
CRC codes). Technically speaking, these are (n,k) cyclic block codes, i.e. codes
with k data bits out of every block of n bits, and with the property that any cyclic
permutation of the bits of a correct block gives another correct block. The cyclic
property makes it easy to generate the checksum bits and to check the correctness of
a received block by using simple shift register circuits with feedback connections.

The properties of such codes are most easily understood if we consider the binary
encoding of the message as representing the coefficients of a polynomial, say d(x),
of degree k− 1, with the least significant bit representing the coefficient of x0, the
next bit the coefficient of x1 and so on. Technically, d(x) is a polynomial over the
finite field G F (2), i.e. it has coefficients in the subset of the integers Z2 = {0,1},
and all arithmetic on coefficients is to be done modulo 2. The checksum similarly
represents a polynomial, say c(x), of degree n− k− 1 over G F (2), chosen so that
the polynomial for the message with checksum appended:

u(x) = xn−k ·d(x)+ c(x)

is divisible by an agreed generator polynomial, say g(x), of degree n− k. c(x) is
easily evaluated, since it is the remainder when xn−k · d(x) is divided by g(x). For
example:

d(x) = x9 + x8 + x6 + x5 + x4 +1 ∼ 01101110001
g(x) = x4 + x1 +1 ∼ 10011
c(x) = x3 +1 ∼ 1001
u(x) = x4 ·d(x)+ c(x) ∼ 011011100011001

Remembering that in modulo 2 arithmetic, addition, ⊕, and subtraction, �, are the
same, and that 0⊕0 = 1⊕1 = 0 and 0⊕1 = 1⊕0 = 1, you are encouraged to check
that c(x) has been correctly evaluated.

Suppose now that a block corresponding to a polynomial r(x) is received. It is a
property of cyclic codes that every multiple of g(x) corresponds to a correct block,
so it is only necessary to check whether r(x) is such a multiple. In general:

r(x) = g(x) ·q(x)+ s(x)

where s(x), the remainder when the block is divided by g(x), is a polynomial of
degree n− k or less. For every correct block, s(x), often known as the syndrome for
the block, is zero. A non-zero syndrome implies an error. Unfortunately, as indicated
above, the opposite is not true – a block containing an error may in fact have a zero
syndrome; the error will then remain undetected. If we suppose that the received
block can be viewed as the polynomial sum of a correct block, u(x), and an error
polynomial, e(x), then an undetected error evidently occurs if e(x) is divisible by
g(x).

Any polynomial of degree n− k which is a factor of xn +1 is a generating poly-
nomial for an (n,k) cyclic code. For example, x4 + x1 +1, as used above, is a factor

4.1 Sequence Control and Error Control 75

of x15 + 1, and generates a (15,11) cyclic code. Since there may be many factors
of xn + 1 for large n, the question arises how one should choose between them in
order to leave as few errors as possible undetected. Analysis of this question relies
on results in the algebra of finite fields. We can summarise them as follows:

1. If a single bit, say bit i, is in error, then e(x) = xi. However, there are no factors
of xn +1 of the form xi · p(x), for any n, so e(x) cannot be divisible by g(x). Thus
no single-bit errors will go undetected.

2. If two bits, say i, j where i > j, are in error, then e(x) = x j · (xi− j +1). Since x j is
not divisible by g(x), e(x) will only be divisible if xm + 1, where m = i− j (and
thus m < n) is. For polynomials over the finite field G F (2), there is a smallest
value m≤ 2n−k−1, for which xm +1 is a multiple of a polynomial of order n−k,
such as g(x). However, if g(x) is a so-called primitive polynomial over the field1,
then the smallest value of m is just exactly 2n−k−1. So if g(x) is primitive, and
n is restricted to be less than or equal to 2n−k−1, then no double bit errors will
go undetected.

3. If there is a burst of errors – i.e. a consecutive sequence of say b bits are in
error – then e(x) = x j · (xb−1 + . . .+1), where j gives the position of the burst of
errors within the block. Since x j is not divisible by g(x), e(x) is only divisible if
(xb−1 + . . .+ 1) is. Since g(x) is of degree n− k, this is not possible if b− 1 <
n− k. So no bursts shorter than the length of the checksum will go undetected.

4. If there are an odd number of errors, then e(x) has an odd number of non-zero
coefficients. However, for polynomials over G F (2), there are no multiples of
x +1 which have an odd number of non-zero coefficients. Thus, if g(x) contains
x + 1 as a factor, no cases where a block contains an odd number of errors will
go undetected.

A common practice is therefore to let g(x) be the product of a primitive polynomial
of degree (h−1) with x+1. This gives a code with minimum Hamming distance at
least 4, and the ability to detect error bursts of length up to h, in blocks of length up
to 2h−1. Standard choices for g(x) are:

CRC-12 = x12 + x11 + x3 + x2 + x1 +1
CRC-16 = x16 + x15 + x2 +1
CRC-CCITT = x16 + x12 + x5 +1
CRC-32 = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10

+x8 + x7 + x5 + x4 + x2 + x1 +1

CRC-32 is a primitive polynomial of degree 32, while the other three are products of
primitive polynomials with x+1. A more detailed analysis of error-detecting codes
of this type can be found in [87].

1 A polynomial g(x) of degree n over a field is primitive if it is irreducible (has no factors other
than unity which are polynomials over the field), and is a generator for the polynomials over the
field. This means that the powers of x evaluated modulo g(x) give all the non-zero polynomials
of order less than n over the field. You can check for yourself that, for example, x4 + x1 + 1 is a
primitive polynomial of degree 4.

76 4 Basic Protocol Mechanisms

Evaluation and checking of the checksums required for polynomial block codes
is most commonly performed by use of suitable hardware. If you want a little pro-
gramming challenge, then try to write a program to do it!

4.1.2 Simple ACK/NACK protocols

In the previous chapter we analysed a protocol for use over a service which cor-
rupted data, and where we assumed that a checksum mechanism could be used to
detect the corruptions. In this case it was sufficient to allow the receiver to respond
to correct data-PDUs by sending a positive acknowledgment (ACK), and to respond
to corrupt data-PDUs by sending a negative acknowledgment (NACK). For ease of
reference, we repeat the protocol here as Protocol 1.

Protocol 1

Sender def= (SAPA?x : M →Q[x])

Q[x : M] def= (right!x→ (right?y : {ACK}→ Sender
[]right?y : {NACK}→ Q[x]))

Receiver def= (le f t?x : M → le f t!ACK→ SAPB!x→ Receiver
[]le f t?y : M ′ → le f t!NACK→ Receiver)

Fig. 4.2 Simple ACK/NACK protocol. Here, (M ′ ∩M) = {}, where M is the domain of correct
data-PDUs.

The system configuration for this protocol is shown in Figure 4.3. This corre-
sponds to the definition that the service offered by the combination of the two pro-
tocol entities and the underlying service, S , is given by:

S ′ def= Sender�S � Receiver

Fig. 4.3 System configuration
for Protocol 1

Sender

SAPA

USER A

Receiver

SAPB

USER B

left right

leftright

S

4.1 Sequence Control and Error Control 77

where we remember that the piping construction P� Q expresses the idea that the
right hand channel of P is joined to the left hand channel of Q, as shown in the
figure.

If the service S can lose or duplicate PDUs, this protocol is inadequate. We can
analyse its behaviour in these cases as follows:

1. A PDU passed from the right channel of Sender to S gets lost before it reaches
the le f t channel of Receiver. In this case the protocol deadlocks, as the receiver
never receives a data-PDU, and so never generates either an ACK or NACK. If the
sender receives no acknowledgment, it sends no further data-PDUs.

2. An acknowledgment (either positive or negative) gets lost on its way back from
Receiver to Sender. The protocol deadlocks, as in (1).

3. The service S generates spurious or duplicated PDUs at the left channel of Re-
ceiver. These will be mistaken for PDUs received from Sender, and an ACK or
NACK will be sent back via the service S . Next time Sender is ready to accept an
acknowledgment from its right channel, it will receive this spurious acknowledg-
ment, with ill-defined results. Depending on whether a false ACK or NACK was
delivered, and on what happens to the next genuine data-PDU sent by Sender,
the receiver may thus lose correct SDUs from the stream of data to be passed to
the user, insert spurious SDUs in the stream or any combination of the two.

This may make the protocol sound quite useless, but this is not really the case.
The protocol is simple and easily implemented, and there do exist systems where
the underlying service (or the medium) for all practical purposes does not lose or
duplicate messages. In such systems, the protocol would be an ideal choice.

4.1.3 Simple Polling Protocols

In the simple ACK/NACK protocol, it is the sender who takes the initiative for send-
ing a data-PDU, and the receiver merely responds to this. Effectively, this obliges the
receiver to be able to receive data at any time after it has sent an acknowledgment.
An alternative strategy is for the receiver to have the initiative, and for it explicitly
to request data when it is able to receive them. This is known as polling. A simple
protocol of this type is shown in Figure 4.4 as Protocol 2. As in Protocol 1, M
is the domain of correct data-PDUs, and M ′ the domain of corrupted messages,
where (M ′ ∩M) = {}. The message a, which is the initial value for S’s parameter,
is arbitrary. The protocol works in the way that the receiver first sends a POLL-PDU
to the sender. If it receives a correct data-PDU, it polls for the next data-PDU; if it
receives a corrupted data-PDU, it sends a REPT-PDU to request retransmission of
the most recent data-PDU. This version of a simple polling protocol has been cho-
sen to correspond as closely as possible to Protocol 1, with POLL corresponding to
ACK, and REPT to NACK.

Apart from the question of where the initiative for sending a data-PDU lies, Pro-
tocol 2 has very similar properties to Protocol 1. If any type of PDU gets lost,

78 4 Basic Protocol Mechanisms

the protocol deadlocks. If the underlying service generates spurious or duplicated
PDUs, they may easily be accepted as genuine. You are invited to investigate the
protocol more closely in exercise 4.3.

4.1.4 ACK/NACK Protocols with Timeout

If the underlying service loses messages, the simplest cure is to introduce a rule for
retransmission by the sender after a suitable period of time without an acknowledg-
ment. Our analysis of the effects of loss on the simple ACK/NACK protocol above
showed that the sender waits permanently if either the data-PDU or its acknowledg-
ment get lost by the service S . Thus reactivation of the sender should be a cure for
either fault. The protocol is given in Protocol 3, where we note that the sending en-
tity now incorporates an internal timer, so that the system configuration is as shown
in Figure 4.5.

Unfortunately, this protocol is not much better than Protocol 1. Consider the
situation where the receiver receives a data-PDU with a correct checksum via its
channel le f t, and then sends a positive acknowledgment. Suppose the acknowledg-
ment gets lost. The sender will eventually time out, and retransmit the same message
in the next PDU, so the receiver receives the message twice and passes it on to the
user (via SAPB) twice. Thus it will not be true that S sat SAPB≤ SAPA. The situ-
ation where the underlying service produces spurious or duplicate PDUs is likewise

Protocol 2

Sender def= S[a]

S[x : M] def= (right?y : {POLL}→ SAPA?x : M → right!x→ S[x]
[]right?y : {REPT}→ right!x→ S[x])

Receiver def= (le f t!POLL→ R)

R def= (le f t?x : M → SAPB!x→ Receiver
[]le f t?y : M ′ → le f t!REPT→ R)

Fig. 4.4 Simple polling protocol.

Fig. 4.5 System configuration
for Protocol 3

Timer

Sender

SAPA

USER A

right

left right

left

Receiver

SAPB

USER B

S

4.1 Sequence Control and Error Control 79

Protocol 3

Sender def= (S ‖ Timer)\{up}
S def= (SAPA?x : M → QT [x])

QT [x : M] def= (right!x→ (up!SET →(right?y : {ACK}→ up!RESET → S
[]right?y : {NACK}→ up!RESET → QT [x]
[]up?t : {TIMEOUT}→ QT [x])))

Receiver def= (le f t?x : M → le f t!ACK→ SAPB!x→ Receiver
[]le f t?y : M ′ → le f t!NACK→ Receiver)

Timer def= (up?s : {SET}→ (up?r : {RESET}→ Timer
[]up!TIMEOUT→ Timer))

Fig. 4.6 ACK/NACK protocol with timeout.

Protocol 4

Sender def= (S[1] ‖ Timer)\{up}
S[n : N0]

def= (SAPA?x : M → QT [n,x])
QT [n : N0,x : M]

def= (right!(n,x)→ (up!SET →(right?y : {ACK}→ up!RESET → S[succ(n)]
[]up?t : {TIMEOUT}→ QT [n,x])))

Receiver def= R[0]

R[n : N0]
def= (le f t?(i : N0,x : M)→ (if (i = succ(n))

then le f t!ACK→ SAPB!x→ R[succ(n)]
elseif (i = n)
then le f t!ACK→ R[n]
else R[n])

[]le f t?(i : N0,y : M ′)→ R[n])

Timer def= (up?s : {SET}→ (up?r : {RESET}→ Timer
[]up!TIMEOUT→ Timer))

Fig. 4.7 PAR protocol with sequence numbers and timeout.
Here, notations of the form c!(n,x) indicate an offer to output, via channel c, the value of the
composed object whose first component is n and second component x, and similarly for input.

not treated properly. In relation to Protocol 1, the protocol with timeout is only an
improvement with respect to what happens if an ‘outgoing’ PDU gets lost. Loss or
corruption of PDUs carrying acknowledgments, or duplication of PDUs, cause the
protocol to misbehave in a different way from Protocol 1, but the result is barely
more acceptable.

The only reasonable cure for this is, as suggested previously, to introduce a num-
bering scheme for the PDUs, so that duplicated PDUs can be filtered off by the
receiving protocol entity before their SDU content is passed to the receiving user. A
protocol of this type is shown as Protocol 4. The system configuration is once again
as in Figure 4.5. This protocol is also slightly simplified in relation to Protocol 3,

80 4 Basic Protocol Mechanisms

as the NACK type of acknowledgment has been removed. It should be clear that,
when a timeout mechanism is used, negative acknowledgments only have an effect
on the response time of the protocol, since they can be used to provoke retransmis-
sion before the timeout period runs out. They do not affect the logical properties
of the protocol in any way. Such protocols, with only positive acknowledgments,
and using a timeout mechanism to control retransmission, are often called Positive
Acknowledge and Retransmission (PAR) protocols.

This is evidently an improvement, as it can deal with lost, corrupted and many
types of spurious data-PDUs. The data-PDU received by Receiver is only passed on
to the user if its sequence number is the successor to the previously accepted PDU’s
sequence number. If the sequence number is the same as before, the acknowledg-
ment is repeated (thus guarding against lost acknowledgments), whereas in all other
cases the PDU is ignored. Sender continues to repeat the same data-PDU until it
receives a positive acknowledgment for it, using the timeout mechanism to decide
when to retransmit the PDU.

Unfortunately, this protocol also has several ways in which it may fail. Firstly,
if S introduces duplicates of correct PDUs (simple example: S repeats all mes-
sages twice!), the receiver will acknowledge them all, assuming that the sender has
not received the acknowledgments. Suppose Sender sends PDU number 3, and S
duplicates it. Receiver will then send two acknowledgments, the first of which will
cause Sender to send PDU number 4, and the second PDU number 5. Suppose now
PDU number 4 gets lost by S . Receiver is in a state where it expects to receive PDU
number 4 (or at the very least, a repeat of number 3). Instead it receives number 5.
The sender believes that the receiver has acknowledged number 4, and continues to
send number 5. The protocol is livelocked.

A similar situation arises if the timeout period is too short. Then the acknowledg-
ment may in fact already have been sent, and be on its way via the service S , when
the timeout causes the sender to retransmit the latest data-PDU. The retransmission
will of course also be acknowledged, and so the sender, as in the previous example,
receives two acknowledgments for the same data, with the same possibilities for
livelock as before.

Polling protocols can be constructed in a similar manner with sequence numbers
and timeout. In this case, the timeout function would most naturally be incorporated
in the receiver, which would poll the sender again if it did not receive a data-PDU
within a suitable period of time. This would make the protocol able to deal with lost
PDUs, just like Protocol 4. However, it would also suffer from the same faults as
Protocol 4, as you can convince yourself if you do Exercise 4.4.

4.1.5 The Alternating Bit Protocol

The real problem with Protocol 3 and Protocol 4 is that they rely on the use of
anonymous acknowledgments. If it were possible for the sender to see what is being
acknowledged, a more suitable reaction could be arranged for. The related polling

4.1 Sequence Control and Error Control 81

Protocol 5

Sender def= (S[1] ‖ Timer)\{up}
S[n : N0]

def= (SAPA?x : M → QT [n,x])
QT [n : N0,x : M]

def= (right!(n,x)→ (up!SET →(right?a : N0 →
(if (a = n)
then up!RESET → S[succ(n)]
else QT [n,x])

[]right?a : E → QT [n,x]
[]up?t : {TIMEOUT}→ QT [n,x])))

Receiver def= R[0]

R[n : N0]
def= (le f t?(i : N0,x : M)→ (if (i = succ(n))

then le f t!i→ SAPB!x→ R[succ(n)]
else le f t!n→ R[n])

[]le f t?(i : N0,y : M ′)→ R[n])

Timer def= (up?s : {SET}→ (up?r : {RESET}→ Timer
[]up!TIMEOUT→ Timer))

Fig. 4.8 PAR protocol with sequence numbers in data and acknowledgments.
Here, E represents the domain of acknowledgment PDUs with erroneous checksums.

protocols fail similarly because they rely on anonymous polling requests (either
POLL or REPT).

This reflects a general problem in distributed systems: namely, that the cooperat-
ing parties do not in general know what their collective global state is, and therefore
have to make decisions on the basis of whatever information they locally have avail-
able, or which their cooperators have sent them. In this case the information ACK
just tells the sender that the other party has received a data-PDU which came in the
right order. The user has no means of knowing exactly which data-PDU is referred
to. By assuming that it was the latest data-PDU sent, the sender will be right most
of the time, but in special cases will make a mistake which, as we have seen, will
cause the protocol to fail.

The only cure for this is to include yet more PCI in the PDUs, so that the sender
and receiver can build up a more complete picture of one another’s state. The neces-
sary PCI here is an identification on the acknowledgments, indicating the sequence
number of the latest correctly received data-PDU. This leads us to Protocol 5, which
again assumes the system configuration shown in Figure 4.5.

In this case, Sender repeats PDU number n until it receives an acknowledgment
explicitly denoting n, and with correct checksum. Receiver replies to each incoming
data-PDU (regardless of whether it was correct or not) with an acknowledgment
which includes the sequence number of the last correctly received PDU – which, of
course, may be the PDU just received or a previous one.

82 4 Basic Protocol Mechanisms

This protocol is resilient to all the types of error which we have considered up to
now: Loss, corruption or duplication of data-PDUs, and loss, corruption or duplica-
tion of acknowledgments. The class of error which it is not resilient to is masquerad-
ing, i.e. introduction by the service S of false PDUs which look as though they are
correct ones, because they have correct checksums and appropriate sequence num-
bers. We shall look at some ways in which this can occur in Section 4.1.6 below.

Although the use of a segment of the natural numbers for the sequence numbers is
an obvious one, it is not a very practical one in a real system, where the PCI has to be
encoded into a finite number of bits! At some stage one runs out of numbers which
can be uniquely represented. However, with the protocol shown, the sender has at
any time at most one data-PDU for which it has not received an acknowledgment –
it does not try to send PDU number succ(n) before it receives an acknowledgment
for PDU number n. Thus no ambiguity can arise in the numbering scheme if we
count modulo some small natural number, Smod , and define the successor function
succ accordingly by:

succ(n) def= (n+1) mod Smod

In particular, we can count modulo 2. If this is done, the protocol is known as an
Alternating Bit Protocol, as the sequence numbers lie in {0,1}, and can be repre-
sented by a single bit which alternately takes on the values 0 and 1 in PDUs derived
from consecutive SDUs.

This is a protocol of great antiquity, which in this case means it originates from
the late 1960s. It took some years before its properties were generally realised
(see [5]). But in later years, in a variety of variations, it has become one of the most
investigated protocols of all time, especially by theoreticians wishing to demonstrate
the merits of their methods. For examples, see [16, 57, 76].

Many modern protocols use a rather larger sequence number space than just
{0,1}. However, the real advantage of allowing a greater sequence number space
is that it permits several PDUs to be outstanding (unacknowledged by the receiver)
at one time. Since this implies something about how much data the receiver is will-
ing to accumulate before sending an acknowledgment, it will be treated under the
subject of Flow Control in Section 4.2 below.

Table 4.1 summarises the techniques which we have looked at and the types of
error which they are resilient to. The table only considers acknowledgment proto-
cols; for the corresponding polling protocols, the same results apply if we consider
polling requests rather than acknowledgments.

4.1.6 The Case of the Floating Corpses

Although it is normally true, when the sender waits for acknowledgment of each
PDU before going on to send the next one, that counting sequence numbers modulo

4.1 Sequence Control and Error Control 83

Table 4.1 Error control mechanisms and error resilience
Mechanisms Resilience to error type

check time plain seq.nos. seq.nos. data-PDU ack-PDU
sum out ACK in data in ack. loss corruption duplication loss corruption duplication

+ + +
+ + + + +
+ + + + + +
+ + + + + + + + + +

some relatively small integer will give no ambiguity, ambiguities can arise in certain
special circumstances.

Imagine a system where PDUs can get lost for a considerable period of time. The
sender eventually times out, declares the PDUs ‘dead’, and retransmits them. The
receiver accepts the retransmitted PDUs. All seems well. So much time goes by that
the same sequence numbers start to be re-used again. And at this moment, just as
in some detective story, the corpses come floating up to the top of the service, as it
were, and arrive at the receiver. Total confusion arises, as most protocols are unable
to counteract this form for masquerading.

This kind of situation occurs unpleasantly often in practice. In large networks,
in particular, there may be several routes which can be followed between any pair
of systems. If one of these routes becomes impassable due to some error, PDUs
which are being sent along this route cannot get through to their destination, and ‘get
stuck’ somewhere on the way. At some stage the sender times out, and retransmits
the PDUs, which (see Chapter 7) are sent by one of the alternative routes to avoid
the blockage. When the blockage is cleared, the PDUs which were held up continue
on their way, and arrive, after a possibly enormous delay, at their destination.

The theoretical solution to this problem is simple: Never re-use sequence num-
bers! A practical approximation to this might be to count, say, modulo 248, which
with a PDU sent every millisecond (quite an achievement in most communication
systems) would mean that the system could have a lifetime of the order of 104 years
before we ran out of sequence numbers. Unfortunately, it is most unlikely that a
system can run for so long without ever ‘crashing’, and after a crash it may be ex-
tremely difficult to guarantee that we can remember where we got to in the sequence
number sequence.

Alternative solutions are usually based on some scheme for explicitly limiting
the time during which a PDU with a particular sequence number is allowed to wan-
der round in the network without reaching its destination. The time limit is usually
called the maximum PDU lifetime, traditionally denoted L. There are several factors
which can affect L, including:

• The maximum time for the physical transfer of a PDU between different systems,
which we shall denote M.

• The number of times which the sender is willing to retransmit a PDU with a given
sequence number, which we shall denote Rmax.

84 4 Basic Protocol Mechanisms

Time

Sending
System

Receiving
System

L

T1

(Rmax-1).T
1

M AR M

Fig. 4.9 Components of the maximum PDU lifetime, L.
Here T1 is the sender’s timeout time, Rmax the maximum number of retransmissions, M the maxi-
mum transfer time between the systems, and AR the response time in the receiving system.

• The time for generating some kind of response in the receiving system, which
we shall denote AR.

It may seem odd to include the receiver’s characteristics in this list, but this is neces-
sary if the sender is to be quite certain that the receiver has finished dealing with the
PDU before it risks sending another one with the same number. The composition of
L is shown in Figure 4.9.

The maximum transfer time, M (and thus also L), can be limited by a number of
techniques, including:

1. Careful design of the routing and congestion control algorithms (which will be
discussed in Chapter 7), so that PDUs cannot go round in loops. This prevents
potentially infinite delays, but does not put any specific limit on the transfer time.

2. Use of ‘hop counters’ as part of the PDU’s PCI. On each direct transfer be-
tween one physical system and another, the counter is decremented by one. If it
reaches zero, and the PDU is not by then at its destination, the PDU is discarded
(i.e. thrown away). This sets an implicit limit on the maximum transfer time. To
determine M exactly, it is necessary to know what the maximum time for trans-
fer between directly connected systems is, and to have an estimate of how many
‘hops’ between directly connected systems are required to reach an arbitrary des-
tination across the network. A reasonable estimate of the number of hops is the
graph-theoretic diameter of the network.

3. Use of timestamps as part of the PCI. The sender includes the time at which the
PDU was first transmitted. If any system receives a PDU which is older than the
agreed maximum, it discards it. Obviously the method only works if all systems
agree to use the same time scale. We shall discuss some ways of achieving this
in Section 5.5.

In practice, combinations of these techniques are often used. For example, the In-
ternet Protocol (IP) used in the Network layer of the Internet protocol suite, uses a

4.1 Sequence Control and Error Control 85

‘time-to-live’ counter in each PDU. This is initially set to an estimate of the time
(in seconds) which it will take to reach the destination. At each intermediate system
through which the PDU passes, the counter is decremented by an estimate of how
many seconds it has taken to handle the PDU in this system, with the restriction that
if this estimate is less than one second, the counter must be decremented by one.
If the counter reaches zero, the PDU is discarded. This is a combination of the hop
counter and timestamp based techniques.

If a reasonable estimate of L can be determined, then the general strategy for
avoiding the floating corpses is simply to wait a time L before re-using any sequence
number over the same logical channel. This can be done in a number of more or less
intelligent (and efficient) ways, depending on the way in which the initial sequence
number is chosen when the logical channel is set up.

1. Channel freezing. Every time a particular logical channel is set up, sequence
numbering is restarted from 0. When use of the logical channel is terminated
(the connection is broken), its re-use is forbidden for a time L, and the channel is
said to be ‘frozen’ in this period. The period during which the channel is frozen
is often referred to as the quiet time.

2. Continuation. Every time a logical channel is set up, sequence numbering on
that channel is restarted from wherever it got to last time the channel was used.
Compared to channel freezing, this reduces the risk of running out of channels,
which may be a scarce resource in a practical system. However, it only works if
all systems can remember where they got to, so after a system crash it is necessary
to wait during a quiet time L before continuing.

3. Time-based initialisation. In this method, originally suggested by Tomlin-
son [123], the initial sequence number for each use of a particular logical channel
is a representation of the time of day, T D0. At any given instant, we know that
all sequence numbers generated within the previous period L may be valid. In
order to avoid confusion between numbers generated in one use of the channel
and those generated in the next use of the channel, we must at all times avoid
using sequence numbers for a period L before they could potentially be used as
initial sequence numbers (in the next use of the channel). This means that we
must avoid:

• Using numbers which are greater than the current time of day, T D. If we
wished to open the channel again, these numbers would apparently lie in the
valid interval for the new use of the channel.

• Using numbers which are less than T D−L (mod Smod), where Smod is the
modulus of the sequence number arithmetic. These would also apparently lie
in the acceptable interval if we opened the channel again.

Figure 4.10 illustrates these rules. If the sender detects that it is about to enter
the forbidden sequence number zone with respect to the current time of day, it
must either wait until T D ‘catches up’ with the chosen sequence number (if the
number is too large) or wait an interval L, until T D (mod Smod) ‘catches up’
with the number (if the number is too small).

86 4 Basic Protocol Mechanisms

L Initial seq.no. curves

Time

TD2TD1TD0

TD0S0

S1

S2

Smod

Smod

=

)(mod

Sequence
Numbers

For
bid

de
n

zo
ne

Fig. 4.10 Selection of unambiguous sequence numbers based on time of day.
At time T D0, the channel is opened with initial sequence number S0 (= T D0). At time T D1, se-
quence number S1 is too large, and the sender must wait until time S1 before using it. At time T D2,
sequence number S2 is too small, and the sender must wait until (T D2 +L) before using it.

This method is interesting because of the way in which time is used to introduce
a form of universal ordering in the distributed system, so that a unique sequence
of identification numbers can be generated on the basis of this ordering. The
principle is quite simple, although it may appear complicated due to the need
to avoid the extra ambiguities which arise from the use of modulus arithmetic.
Unfortunately, these types of complication appear in many other contexts in ‘real-
life’ systems, where modulus arithmetic has to be used because of limitations on
the size of the number representation. We shall see some more examples in the
next section.

4. Randomised initialisation. All three of the above methods are deterministic,
which means that anyone monitoring the traffic in the network can predict which
initial sequence numbers will be chosen next time two given parties, say A and B,
try to set up a connection. So although the methods effectively solve the problem
of avoiding outdated messages, they do not protect A and B against malicious
intruders who deliberately insert fake messages into the stream of data. This is
a security risk: A malicious intruder M can pretend to be A or B, and can effec-
tively insert messages with suitable sequence numbers into the stream of PDUs.
To avoid this problem, Bellovin [8] proposed that the initial sequence number
should be computed as the sum of the “time of day” (as proposed by Tomlinson)
and a random number. Bellovin’s specific recommendation was to compute this
number as the cryptographic checksum (see Section 6.2) of the addresses of the
two parties who are trying to communicate, together with a secret not known to

4.2 Flow Control 87

others. Good secrets could, for example, be generated by a genuine (electronic)
random number generator or by using internal system information such as the
setting of the system clock when the system was last booted.

4.2 Flow Control

The purpose of the Flow Control function is to prevent the receiver from being
flooded with more data than it has resources to deal with. This is obviously partic-
ularly important when the sender and receiver operate at different speeds. This aim
is easy to achieve in polling protocols, as the receiver explicitly controls the flow of
data via the polling mehanism. But in fact all the acknowledgment protocols which
we have considered have implicitly contained a flow control function, as they all
have the property (as long as we avoid their failure modes) that the sender will not
send a new PDU until the previous PDU has been acknowledged. This corresponds
to the intended specification:

Specification 4.1 S ′ sat (SAPB ≤ SAPA)∧ (|#SAPB−#SAPA| ≤ 1)

for the composed service

S ′ def= Sender�S � Receiver

This specification will in fact be satisfied, again as long as the underlying service,
S , only introduces those types of error which the protocol can deal with correctly.

Acknowledgement protocols which satisfy the specification above are often
known as Stop-and-wait protocols. Their advantage is that they are easy to imple-
ment, and the receiver can control the flow to a certain extent (within the limits set
by the sender’s timeout period) by introducing a delay before it sends the acknowl-
edgment. Their obvious disadvantage is that at most one data-PDU is passed from
sender to receiver for each ‘round trip’ time, that is to say, the time it takes for a
PDU to be transmitted via the underlying service from sender to receiver, plus the
time the receiver takes to evaluate its response, plus the time the acknowledgment
takes to return to the sender.

If this round trip time is much larger than the time it takes to transmit (i.e. physi-
cally send the bits of) the single data-PDU, then it is clear that the system’s through-
put will only be a small fraction of the transmission rate. In many systems, this is
unacceptable. Particularly extreme cases are systems using satellite communication
channels, where the round trip time is of the order of 500 milliseconds, and the
transmission rate is of the order of 106–109 bit/s. A PDU of size 104 bits (which is
rather large for many applications) only takes of the order 0.01–10 ms. to transmit.
Use of a stop-and-wait protocol means that only one such PDU can be transmit-
ted per 500 ms., so despite the large bandwidth of the satellite channel, the average
throughput over a longer period of time is of the order of 2× 104 bit/s, and the
sender spends most of its time waiting for acknowledgments.

88 4 Basic Protocol Mechanisms

4.2.1 Fixed Window Protocols

The next development to improve the throughput, of course at the expense of poten-
tially requiring more resources in the receiver, is to allow more than one data-PDU
to be outstanding – i.e. sent but not yet acknowledged. The specification for the
protocol then becomes:

Specification 4.2 S ′ sat (SAPB ≤ SAPA)∧ (|#SAPA−#SAPB| ≤Ws)

where Ws is some constant for the service S ′, known as the send window size.
Evidently, for stop-and-wait protocols Ws = 1.

The simplest implementation of this specification is to allow the sending protocol
entity, when in the state where it has sent and received acknowledgments for PDUs
with sequence numbers from 0 to ns, to send those with numbers from ns +1 up to
ns +Ws, (where all arithmetic is done modulo Smod , the modulus of the sequence
number arithmetic). This interval of sequence numbers is known as the send win-
dow. At any time, the send window describes the set of PDUs which are allowed
to be sent but not acknowledged. In a fixed window system, Ws is a constant, and
(depending on the circumstances) may at any instant be larger or smaller than the
number of PDUs which the sender actually has available to send. If the window size
is larger, then we say that the send window is not full. The filled portion of the send
window corresponds to those PDUs which in fact have been sent, but for which no
acknowledgments have been received. This is illustrated in Figure 4.11.

The receiver must always acknowledge the PDU with the largest number which
it has received correctly, and by convention this implicitly acknowledges all PDUs
with smaller numbers. ‘Correctly’ means here that the PDU arrives without check-
sum error, and that the receiver has accepted all preceding PDUs in the sequence.
Thus if the receiver has already accepted PDUs with numbers:

0,1,2,3,5,6

and receives PDU number 7, then it acknowledges number 3, whereas if it receives
number 4, then it acknowledges number 6.

Note the careful choice of words in the previous paragraph. The acknowledgment
only applies to those PDUs which the receiver has accepted. The number of PDUs
which it is prepared to accept while there are some previous PDUs missing is known
as the receive window size for the protocol, often denoted Wr. If the receiver has
correctly received and acknowledged all PDUs with sequence numbers from 0 to
nr, then its receive window is the sequence number interval {nr + 1, . . . ,nr +Wr}
(mod Smod). If Wr = 1, then no ‘holes’ are allowed in the received sequence, and
the receiver will ignore all PDUs except exactly the one with number nr +1, which
is the next one it expects to receive. In stop-and-wait protocols, Wr = Ws = 1.

If Wr > 1, then any PDUs with numbers in the window can be accepted. Evi-
dently, in the example above, Wr must be at least 3. Note that the receive window
does not in general need to be full – it defines the maximum number of PDUs which
the receiver is willing to collect up while waiting for a missing one in the sequence.

4.2 Flow Control 89

0

0

1

1

2

2

3

3

4

4

4

4

5

5

6

6

7

7

7

7

0

0

1

1

2

2

3

3

Transmitted and
acknowledged PDUs

Transmitted and
acknowledged PDUs

Ws

Ws

Queue of
unsent PDUs

Queue of
unsent PDUs

Transmitted and
unacknowledged PDUs

Transmitted and
unacknowledged PDUs

Sequence numbers

Sequence numbers

(b)

(a)

Fig. 4.11 Functioning of a window protocol.
(a) Send window with Ws = 4 not full. Two PDUs have been sent but not yet acknowledged.
(b) Send window with Ws = 4 full. Four PDUs have been sent but not yet acknowledged. Further
PDUs to be transmitted have to wait in a queue until there is room in the window.

If no out-of-sequence PDUs arrive, if the receiving service user is able to accept
SDUs as fast as the service provider can generate them from PDUs, and if each
SDU is generated from a single PDU, then the window need never contain more
than one PDU, regardless of Wr.

Protocols with Wr = 1 and those with Wr > 1 have rather different properties in
a number of respects. The most important differences are in the available strategies
for retransmission after error, and in the permissible range of send window sizes.
We shall consider each class of protocol in turn.

4.2.2 Protocols with Receive Window Size 1

Since protocols with Wr = 1 have the property that the receiver will refuse to accept
any PDU except the one with number nr +1, it follows that the sender must retrans-
mit all unacknowledged PDUs if it detects an error – that is, if it times out due to not
receiving an acknowledgment. It must assume that the receiver has never received
the PDU it was waiting for, and that any subsequent PDUs in the send window have

90 4 Basic Protocol Mechanisms

�

� Time

Ack.no.

Seq.no.
0 1 2 3 4 5 2 3 4

	 	 	 	 	 	 	0 1 1 1 1 1 2 3

�
�
�
�
�
���

�
�
�
�
�
���

�
���

?

�
�
�
�
�
���

�
�
�
�
�
���

�
�
�
�
�
���

�
�
�
�
�
���

�
�
�
�
�
���

�
�
�
�
�
���

� �
R R R

� �

�
�
�
�
�
���

�
�
�
�
�
���

�
�
�
�
�
���

�
�
�
�
�
���

�
�
�
�
�
���

�
�
�
�
�
���

�
�
�
�
�
���

�

Timeout 2

Fig. 4.12 Retransmission strategy with Receive Window Size 1.
R indicates PDUs which are rejected by the receiver.

therefore also been lost or rejected. An illustration of this can be seen in Figure 4.12,
and a protocol using this scheme is shown as Protocol 6.

In the definition of the sender, acks represents the number of the latest PDU for
which an acknowledgment has been received, ns the number of the next PDU to be
sent, and ml the list of PDUs which have been sent but not acknowledged. On receipt
of an acknowledgment for PDU number a, PDUs with numbers from succ(acks) up
to a are removed from the list, and acks is adjusted accordingly (process QA).

Note that a timer is required for each value of ns, but when a timer runs out, it is
assumed to be for the ‘oldest’ unacknowledged PDU, with number succ(acks), and
all PDUs with numbers from succ(acks) up to ns are retransmitted (process QR).

This retransmission strategy, often known as a go back n strategy, is quite simple
to administer, but can obviously cause significant overhead if the send window is
large, so that there can be many unacknowledged PDUs outstanding. It is therefore
most suitable for use in systems where the error rate is reasonably low.

A rather less obvious property of protocols with Wr = 1 is that the send window
size must not exceed Smod − 1, where Smod is the modulus of the sequence number
arithmetic. In other words Ws is limited to one less than the maximum number of
distinguishable sequence numbers. To see why this is so, consider a scenario where
this rule is not enforced:

1. The sender sends a sequence of Smod PDUs with sequence numbers 0, . . . ,Smod−1.
2. The sender receives an acknowledgment for the PDU with the sequence number

Smod−1.
3. The sender sends Smod new PDUs with sequence numbers 0, . . . ,Smod−1.
4. The sender receives another acknowledgment for a PDU with sequence number

Smod−1.

Evidently, the sender is then unable to tell whether the latest acknowledgment is
for the last PDU in the second sequence of PDUs which it has sent, or whether the

4.2 Flow Control 91

Protocol 6

Sender def= (S[0,1, []] ‖ Timer[0,0]) \{up}
S[acks,ns : ZSmod ,ml : M ∗]

def= (SAPA?x : M → right!(ns,x)→ (up!SET → S[acks,succ(ns),ml̂x])
[]right?a : ZSmod → QA[acks,a,ns,ml]
[]right?a : E → S[acks,ns,ml]
[]up?t : {TIMEOUT}→ QR[acks,acks,ns,ml,ml])

QA[acks,a,ns : ZSmod ,ml : M ∗]
def= (if (acks < a < ns)

then up!RESET → QA[succ(acks),a,ns,tlml]
else S[acks,ns,ml])

QR[acks,a,ns : ZSmod ,ml,ml′ : M ∗]
def= (if (succ(a) < ns)

then right!(succ(a),hdml)→ up!RESTART→
QR[acks,succ(a),ns,tlml,ml′]

else S[acks,ns,ml′])

Receiver def= R[0]

R[n : ZSmod]
def= (le f t?(i : ZSmod ,x : M)→ (if (i = succ(n))

then le f t!i→ SAPB!x→ R[succ(n)]
else R[n])

[]le f t?(i : ZSmod ,y : M ′)→R[n])

Timer[acks,ns : ZSmod]
def= (up?s : {SET}→ Timer[acks,succ(ns)]

[]up?r : {RESET}→ Timer[succ(acks),ns]
[]up?r : {RESTART}→ Timer[acks,ns]
[]up!TIMEOUT→ Timer[acks,ns])

Fig. 4.13 Window protocol with Ws > 1 and Wr = 1.
Here, ZSmod is the domain of integers modulo Smod , E represents the domain of acknowledgment
PDUs with erroneous checksums, and M ∗ the domain of sequences of messages.

PDU with number 0 in this sequence got lost, with the result that all subsequent
PDUs in the sequence were rejected by the receiver, so that the acknowledgment
is really for the last PDU in the first sequence of Smod PDUs. If the sender is at
most allowed to send Smod − 1 PDUs without receiving an acknowledgment, then
this type of ambiguity cannot arise. Stop-and-wait protocols, where Ws is restricted
to 1, can clearly obey this rule for any value of Smod greater than or equal to 2; thus
the Alternating Bit Protocol is safe from error in this respect.

This reflects a general problem in distributed systems: What exactly can one party
deduce about the other party on the basis of the information available? In this case,
what can the sender deduce when it receives an acknowledgment for a PDU with
sequence number N? It can deduce that the receiver has received just exactly the
PDU with that number, since Wr = 1. But it also needs to be able to deduce whether
N lies within the current send window (in which case it is a ‘new’ acknowledgment,

92 4 Basic Protocol Mechanisms

and the send window can be moved to cover a new interval) or whether it lies outside
the current send window (in which case it is an acknowledgment for an ‘old’ PDU,
which implies that none of the PDUs in the current send window have yet been
accepted). The sender can only distinguish between these two cases if it knows that
the send window and receive window do not overlap until the receiver in fact has
received all PDUs before the current send window. This implies that the send and
receive windows must not be so large that they cannot form disjoint intervals in
the sequence number space. A minimum condition for this, when Wr = 1, is that
Ws ≤ Smod−1.

4.2.3 Protocols with Receive Window Size Greater than 1

When the receive window size exceeds one, the receiver is willing to accept PDUs
which arrive out of sequence, leaving ‘holes’ in the sequence which have to be
filled in later. Assuming that the service is to offer sequence preservation, the proto-
col must incorporate some strategy for retransmitting the missing PDUs, preferably
without retransmitting those PDUs which in fact have been accepted out of sequence
by the receiver.

The simplest strategy is just to use a timeout mechanism at the sender, in the
usual way. Suppose the receiver has acknowledged PDUs with sequence numbers
up to nr, is missing the PDU with number nr + 1, and has accepted (but neither
acknowledged nor passed on to the service user) PDUs with numbers from nr +2 to
nr + m, where of course m < Wr and all arithmetic is performed modulo Smod . The
receiver continues to acknowledge receipt of PDU number nr, until it receives PDU
number nr + 1 as a result of retransmission by the sender following timeout. The
receiver then acknowledges receipt of PDU nr + m, thus implicitly acknowledging
receipt of all the preceding PDUs, derives SDUs from all PDUs with numbers nr +1
to nr +m, and passes them on to the user in correct sequence number order. This is
illustrated in Figure 4.14.

Unfortunately, although this strategy is logically correct, it is difficult to organise
it properly in practice. The reason for this is that it takes some time for an acknowl-
edgment to arrive back at the sender after a retransmission. During this time, several
other timeout periods may have expired – for PDUs with numbers nr +2,nr +3 and
so on – so that a whole series of PDUs will in fact be retransmitted. This is exactly
what we wanted to avoid. A common way to prevent this is to allow the receiver ex-
plicitly to request any PDUs which appear to be missing, before the sender starts to
time out. This is commonly called a selective repeat (or selective reject) mechanism.
A well-known protocol which incorporates such a mechanism is HDLC [131].

Since we have seen that the maximum permissible size of send window is related
to the modulus of the sequence number arithmetic in a particular way when Wr = 1,
it is natural to ask what the relation might be when Wr > 1. Once again, we want to
make it impossible for the sender to misinterpret the acknowledgment. Let us again
assume that the sender knows how big Wr is. When the sender receives an acknowl-

4.2 Flow Control 93

�

� Time

Ack.no.

Seq.no.
0 1 2 3 4 5 2 6 7

	 	 	 	 	 	 	0 1 1 1 1 1 5 6

�
�
�
�
�
���

�
�
�
�
�
���

�
���

?

�
�
�
�
�
���

�
�
�
�
�
���

�
�
�
�
�
���

�
�
�
�
�
���

�
�
�
�
�
���

�
�
�
�
�
���

� �
B B B

� �

�
�
�
�
�
���

�
�
�
�
�
���

�
�
�
�
�
���

�
�
�
�
�
���

�
�
�
�
�
���

�
�
�
�
�
���

�
�
�
�
�
���

�

Timeout 2

Fig. 4.14 Retransmission strategy with Receive Window Size >1.
B indicates out-of-sequence PDUs which are buffered by the receiver until the missing PDU is
received.

edgment for PDU number N, it then knows that the receiver has received one or more
PDUs with sequence numbers in the interval {N−Wr + 1, . . . ,N} (mod Smod). To
avoid ambiguity, it must be possible to decide whether this interval lies inside or
outside the current send window. Thus a minimum requirement in this case is that
(Ws +Wr)≤ Smod . A common arrangement is to choose Ws = Wr, in which case the
limit for each of them is Smod/2.

4.2.4 Dynamic Window Systems and the Concept of Credit

A clear requirement for the implementation of a protocol with send window size Ws
is that there be Ws buffers available at the sender to keep the unacknowledged PDUs
in until the acknowledgments for them arrive. Likewise, when the receive window
size is Wr, there must be Wr buffers available at the receiver to keep out of sequence
PDUs in until all preceding PDUs in the sequence have arrived.

There is therefore in general a balance to be sought between using large win-
dows (which can improve the throughput of the system) and limiting the amount of
buffer space required. This is particularly important in systems which maintain large
numbers of active logical channels at the same time. This is for example a common
situation in implementations of the upper OSI layers (from the Transport Layer and
up). A useful strategy in such systems is to use dynamic buffer allocation according
to the current needs of each logical channel, and dynamically to modify the window
sizes accordingly.

The most usual mechanism for this purpose is the so-called credit mechanism,
whereby each party using a logical channel informs the other(s) from time to time
how many buffers it is prepared to offer for receiving data. ‘From time to time’

94 4 Basic Protocol Mechanisms

usually means whenever there is a change in the number of buffers available, in
accordance with the usual practice of keeping peer entities informed about impor-
tant changes of state. Typically, this information is transferred in special ack-PDUs
bearing explicit acknowledgments and the current credit value. Thus for example an
OSI style ack-PDU might bear an acknowledgment for the data-PDU with sequence
number nr, and credit value C. This would tell the other party that PDUs up to and
including number nr had been received, and that credit was available for sending
PDUs with numbers nr +1 up to nr +C. In a system offering stream services, such
as a service based on the Internet TCP protocol, credit would be measured in octets
rather than PDUs, so a credit value of C would inform the other party that space
for C octets of data was available; the sender would be left to decide whether these
should be sent all at once or divided among several PDUs.

4.3 Indication of Change of Peer State

A change in the state of one of the users of a service can in principle be indicated
to the other user(s) by the transfer of a single PDU. In simple cases, this may be
enough. As an example, consider a service which enables users to tell one another
how much data they are prepared to accept. This information could be carried in a
single ack-PDU bearing credit information, as described in the previous section.

In more critical cases, however, this would not be satisfactory, and a more com-
plex exchange of PDUs is required. Firstly, because of the possibility of error, and
secondly, in order to allow the users to exchange data, in order to establish their
global state. In many cases, it may indeed be a service requirement that such ex-
changes take place as atomic actions, so that the desired updating of state informa-
tion takes place for all users at the same time, uninterrupted by other activities. If
the exchange takes place atomically, we shall call it an atomic exchange.

4.3.1 Two-way Exchanges

Simple protocols which allow two service users to exchange data usually follow a
scheme something like that given as Protocol 7. Such protocols are usually known
as two way exchange or (two-way) handshake protocols. The particular example
here is based on a number of ISO protocols for connection establishment.

In OSI parlance, as discussed in Chapter 2, the users of a service interact with
the service at Service Access Points by taking part in interactions known as service
primitives. In Protocol 7, the Service Access Points are modelled by CSP chan-
nels SAPA and SAPB, as in the previous examples of this chapter. The protocol is
initiated when the user at SAPA, known as the initiating user, interacts with the ser-
vice provider in a request service primitive, here abstracted as a CSP message in
the domain req. The protocol entity on the initiating side (Sender) then transmits

4.3 Indication of Change of Peer State 95

Protocol 7

Sender def= (S ‖ Timer)\{up}
S def= (SAPA?r : req→ right!r→ up!SET → SR)

SR def= (right?c : accept → up!RESET → SAPA!c→ (. . .)
[]right?a : re f use→ up!RESET → SAPA!a→ S
[]up?t : {TIMEOUT}→ SAPA!re f → S)

Receiver def= (R ‖ Timer)\{up}
R def= (le f t?r : req→ SAPB!r→ up!SET → RR)

RR def= (SAPB?c : accept → up!RESET → le f t!c→ (. . .)
[]SAPB?a : re f use→ up!RESET → le f t!a→ R
[]up?t : {TIMEOUT}→ SAPB!re f → le f t!re f → R)

Timer def= (up?s : {SET}→ (up?r : {RESET}→ Timer
[]up!TIMEOUT→ Timer))

Fig. 4.15 Basic protocol for providing confirmed service.
Here, ref:refuse denotes an internally generated message to indicate that the attempt to terminate
the protocol normally has been abandoned.

a request-PDU, whose information content is essentially the same as that of the
request primitive.

On receipt of such a request-PDU, the protocol entity Receiver, in this context
often known as the responding entity, interacts with the user attached at SAPB via an
indication primitive, derived from the same information. The user is then expected
to reply by taking part in a response primitive. The response can here be either pos-
itive (in domain accept) or negative (in domain refuse), and causes the responding
entity to transmit a corresponding PDU back to the initiating entity, which then inter-
acts with the initiating user via a confirm primitive, which bears essentially the same
information as the responding user included in its response. This style of service, in
which the responding user must respond explicitly to the receipt of information from
the initiating user by sending a reply, is known as a user-confirmed service. It gives
an effective guarantee that the user has in fact received the information. Another
style of confirmed service, in which the provider issues a confirm as soon as the in-
formation is delivered on the responding side, without requiring the responding user
to react, is found in some systems. This is known as a provider-confirmed service.
Evidently it does not give as convincing a guarantee that the information has been
received.

The interactions between the users and the service are in OSI literature often
described by so-called time-sequence diagrams, which show the temporal relation-
ships between the service primitives in diagram form. For user-confirmed services,
such as the one provided by Protocol 7, the diagram is as shown in Figure 4.16.

In time-sequence diagrams, time is assumed to run from top to bottom. This dia-
gram states that the request primitive precedes and leads to the indication primitive,

96 4 Basic Protocol Mechanisms

�����

request

�����confirm

�����indication
�����

response

Fig. 4.16 Time-sequence diagram for a user-confirmed service.

and that the response primitive precedes and leads to the confirm primitive, while
the indication primitive precedes, but does not directly lead to, the response.

If the protocol succeeds, in the sense of terminating with a positive confirm at the
initiating user, the next phase of operation is started. This is indicated in Protocol
7 by (. . .). If the protocol is in fact a connection establishment protocol, this phase
would be the data transfer phase.

4.3.2 Atomic Two-way Exchanges

In the very nature of things, connection establishment protocols give atomic ex-
changes, since in connection-mode operation it is meaningless to do anything else
before the connection is established. In other situations this is not necessarily the
case. In order to ensure that the exchange is atomic, it may then be necessary for
the protocol entities to delay, ignore, or refuse to carry out requests from the ser-
vice users until the protocol has terminated. Alternatively, and less satisfactorily, a
strict discipline could be imposed on the service users, ensuring that they do not do
anything which might prejudice the atomicity of their exchange.

An example of a case where atomicity is important is the setting up of a synchro-
nisation point in the stream of data passing between two users of a service, so as
to be able to return to this point after an error or for other reasons. The setting of
the point must clearly not be interrupted by further data transfers, as otherwise there
would be doubt about where exactly in the data stream the point was placed. The
ISO OSI Session Service [139] contains a facility of this type, with rules specify-
ing that, except in the case of genuine failure of a user, primitives not related to the
synchronisation point facility will not be accepted:

1. On the initiator side, between the occurrence of the request and confirm primi-
tives.

2. On the responder side, between the occurrence of the indication and confirm
primitives.

4.3 Indication of Change of Peer State 97

�

�

�

�

�

�

�

�

� �

��
�

Call

Continuation Return

RP1 activated

RP1
is executed

Execution
is suspended

RP1(ip1 . . . ipn)

(op1 . . .opm)

Calling procedure Called procedure
ServerClient

Fig. 4.17 Remote Procedure Call of procedure RP1 with calling parameters ip1 . . . ipn and return
parameters op1 . . .opm.

This is most easily understood with reference to Figure 4.16.
Atomicity of exchanges is also desirable because it makes it easy to imple-

ment a number of structuring concepts which are useful in system design. A well-
known example of this is the Remote Procedure Call (RPC) convention illustrated in
Figure 4.17. Here all interactions between systems on different sites are expected to
appear like procedure calls executed by the initiating party, which in this context is
usually known as the Client. The outgoing part of the exchange carries ‘call parame-
ters’ to the remote system, often called the Server, and the returning part of the ex-
change carries ‘return parameters’ back to the Client. To give the desired atomicity,
the client’s activity is suspended while the remote procedure is being executed. This
is a generally accepted extension to distributed systems of the ‘send message/wait
answer’ system call convention well-known from many operating systems.

4.3.3 Exchanges in the Presence of Errors

In Protocol 7, the initiating protocol entity simply gives up the exchange if it re-
ceives no PDU from the responding entity within a certain period of time. Likewise,
the responding entity gives up (and generates a negative ‘reply’) if it does not receive
any response from the responding user within a suitable time. It follows from the
general discussion earlier in the chapter that this is not necessarily a safe procedure
in the presence of errors.

It is obviously particularly dangerous to rely on a simple protocol for connection
establishment when errors may occur, as the protocol is intended to make it possible
for the service users to establish their initial global state. If this is wrong from the
very start, almost anything might happen later!

A simple modification to Protocol 7 would of course be for Sender to retrans-
mit the initial request-PDU, r, several times instead of giving up after one failed

98 4 Basic Protocol Mechanisms

Protocol 8

Sender def= (S ‖ Timer)\{up}
S def= (SAPA?r : req→ right!(x,r)→ up!SET → SR[x])

SR[x : tok] def= (right?(p,q : tok,c : accept)→ up!RESET →
(if (p = x)
then (right!(p,q,check)→ SAPA!c→ . . .)
else (SAPA!re f → S))

[]right?(p,q : tok,a : re f use)→ up!RESET →
(if (p = x)
then (SAPA!a→ S)
else SR[x])

[]up?t : {TIMEOUT}→ SAPA!re f → S)

Receiver def= (R ‖ Timer)\{up}
R def= (le f t?(x : tok,r : req)→ SAPB!r→ up!SET → RR[x])

RR[x : tok] def= (SAPB?c : accept → le f t!(x,y,c)→ RC[x,y]
[]SAPB?a : re f use→ le f t!(x,y,a)→ R
[]up?t : {TIMEOUT}→ le f t!(x,y,re f)→SAPB!re f → R)

RC[x,y : tok] def= (le f t?(p,q : tok,c : check)→
(if (p = x)∧ (q = y)
then (up!RESET → . . .)
else RC[x,y])

[]up?t : {TIMEOUT}→ SAPB!re f → R)

Timer def= (up?s : {SET}→ (up?r : {RESET}→ Timer
[]up!TIMEOUT→ Timer))

Fig. 4.18 Three-way Handshake protocol.
Here, ref:refuse denotes an internally generated message to indicate that the attempt to terminate
the protocol normally has been abandoned, and x and y denote values generated by the initiator and
responder respectively, in order to identify the exchange.

attempt to establish the connection. The organisation of the protocol would then be
analogous to the data transfer protocols presented in the early part of the chapter:
Sender would retransmit the request-PDU after a certain time without a response,
and Receiver would retransmit the refuse- or accept-PDU if it received a duplicate
copy of the request-PDU. By including a checksum in the PDUs, we could ensure
that the protocol was as least as resilient to errors as Protocol 5.

One particularly nasty problem would, however, remain: How to avoid the ‘float-
ing corpses’. It lies in the nature of things that the PDUs of an establishment protocol
cannot themselves usefully bear sequence numbers – the initial sequence number for
data-PDUs is one of the components of the global state which we wish to establish.
So we must find some other information which can be exchanged and which will
enable us to distinguish false PDUs from genuine ones during connection establish-
ment.

4.3 Indication of Change of Peer State 99

(a) A B
→ < req, ourre f = x > → A initiates.
← < accept, ourre f = y, yourre f = x > ← B responds.
→ < check, ourre f = x, yourre f = y > → A confirms.

(b) A B
. . . < req, ourre f = x > → delayed req-PDU
← < accept, ourre f = y, yourre f = x > ← B responds.

A gives up.
(B times out.)

(c) A B
. . . < req, ourre f = x > → delayed req-PDU
← < accept, ourre f = y, yourre f = x > ← B responds.
. . . < check, ourre f = x, yourre f = z > → Delayed check-PDU

A and B give up.

Fig. 4.19 Operation of three-way handshake protocol.
(a) Normal operation, (b) Delayed request-PDU, (c) Delayed request-PDU and check-PDU.

A widely accepted method is the so-called Three-Way Handshake protocol, first
proposed by Tomlinson [123]. As the name implies, this involves a three-way ex-
change. The general scheme of this is given as Protocol 8. Essentially, the initiating
protocol entity sends a request-PDU carrying an arbitrary value, x, the responding
entity replies with a response-PDU bearing (x,y), and the initiating entity repeats
this in a check-PDU as an extra confirmation. An analogy is the use of ‘our refer-
ence’ and ‘your reference’ fields in an exchange of letters: if you get a letter with an
unknown reference on it, you throw it straight in the wastebin. The normal operation
of the protocol is illustrated in Figure 4.19(a).

What happens if ‘floating corpses’ do in fact turn up when this protocol is used
is illustrated in Figure 4.19(b) and (c). In (b), B responds to a false request-PDU,
but A is unable to match B’s reference x to any exchange in which it (A) is currently
taking part. A gives up and (in our version of the protocol) B subsequently times out
and therefore also gives up. In (c), B responds to a false request-PDU, but when it
receives the false check-PDU it finds an incorrect reference, z, instead of the value
y which it itself had generated. In this case, both A and B give up without timeout.

The protocol will in fact survive receipt of out-dated request-, response- and
check-PDUs, assuming that the references used do not by some horrible chance
get re-used again in both systems just at that moment when the delayed PDUs turn
up again. With normal error rates, this may reasonably be considered a very rare
possibility indeed.

In Tomlinson’s original version of this protocol, the two references were the ini-
tial sequence numbers for use during transmission from initiator to responder and
vice-versa. More recently, the scheme has been used for the connection establish-
ment phase of the Internet/DoD TCP Transport layer protocol [212], and the ISO
Class 4 Transport Protocol [138], two protocols specifically designed for use over

100 4 Basic Protocol Mechanisms

relatively unreliable underlying services, including connectionless-mode Network
services. While TCP uses Tomlinson’s scheme unaltered, the references in the ISO
protocol are arbitrary values used for identifying the connection under establish-
ment. More generally, the three-way handshake protocol finds uses in all situations
where a confirmed service is required over an unreliable underlying service.

4.4 Change of Service Mode

It should be clear from the techniques already presented that offering a different
mode of service from that offered by the underlying service is not so difficult as
might be imagined at first sight. Many of the techniques are relatively independent
of the mode of the underlying service, and are thus readily modified for use over a
different mode. However, there are a few central ideas which it can pay to look at
more closely.

4.4.1 Connection-mode and Connectionless-mode

To provide a connectionless-mode service over a connection-mode one, we essen-
tially have to hide the fact that the connection-mode service requires the user to
perform some administrative tasks to establish the logical channel before sending
data, and to release it again afterwards. A simple-minded implementation might be
to establish a new connection every time a connectionless-mode SDU is to be sent,
but this would in many practical cases be excessively expensive – both in time and
money, since public networks often charge an initial sum every time a connection is
set up.

A more attractive alternative, at least in cases where non-trivial amounts of data
are to be sent, is to set up the underlying connection when the user requests trans-
mission of the first connectionless-mode SDU, and then to keep it set up for as
long as a ‘reasonable’ data flow is maintained. This can be estimated by the time
which elapses between consecutive transmission requests from the user, in the way
that a long period without data causes the connection to be released. This type of
approach is, for example, suggested in Part 3 of ISO Standard 8473 [143], which
deals with the specific problem of operating ISO’s Connectionless-mode Network
protocol over (amongst other possibilities) a Connection-mode X.25 service.

To produce a connection-mode service from a connectionless one, the PDUs re-
quired for the operation of the protocol which provides the connection-mode service
must be sent via the connectionless-mode one. This gives the obvious problem that
there is no guarantee that the PDUs arrive in correct sequence, or even that they
arrive at all. The solution is just as obvious – choose protocol mechanisms which
are resilient to these phenomena. A typical example can be seen in the ISO Class
4 Transport Protocol, which is intended for use in these circumstances. This pro-

4.4 Change of Service Mode 101

tocol makes use of 3-way handshake for connection establishment, and offers the
possibility of using a large receive window during data transfer.

4.4.2 Point-to-point and Multi-peer

Generally speaking, the transformation between a multi-peer and a point-to-point
(‘two-peer’) service is not so much a protocol question as a matter of efficiency. A
point-to-point service is a special case of a multi-peer service, and protocols which
make it possible to offer a service to several users at the same time can generally
operate quite satisfactorily if there are only two users. If problems arise, it is usu-
ally because multi-peer services may involve considerable administrative overhead,
which would be wasted in a situation where there are only two users. Some multi-
peer services – for example, the connectionless-mode broadcast services offered
by some local area networks – essentially cost nothing, and only require the pres-
ence of suitable addressing mechanisms, in order to be able to offer a point-to-point
transmission service.

The transformation from a point-to-point to a multi-peer service, on the other
hand, in general involves a good deal of new administration. There are several rea-
sons for this. Firstly, the simple-minded serial realisation of a multi-peer service by
using a point-to-point service to transmit sequentially to each of the other parties
causes greater delays. This can be inconvenient in two ways:

• The system will have to wait, resources will have to be retained, and so on, for a
long time.

• There is a greater risk of an error occurring before the transmission to all parties
is completed.

Thus more efficient ways of distributing the message to the parties involved are
worth looking for. What can be done here will depend on the topology of the com-
munication network, which determines which parties can send directly to which
others. Secondly, the protocol must take into account the possibility that the slaves
operate at different speeds, so that any timeout periods must be set to suit the slowest
of the slaves. And finally, the protocol may need to allow for the failure of one or
more of the parties, while still performing correctly for the others. We shall discuss
these problems and some solutions for them in more detail in Chapter 5.

4.4.3 Simplex and Duplex

It requires no special effort to offer a simplex data transfer service on the basis of
a duplex underlying service. All you have to do (at least in principle) is not send
data in both directions! In fact, all the data transfer protocols which we have looked
at up to now have offered a simplex data transfer service, but have essentially been

102 4 Basic Protocol Mechanisms

based on a duplex underlying service, since data-PDUs and acknowledgments flow
in opposite directions. (To offer a duplex service, our protocols would need to be
modified to carry data in both directions.)

To obtain slightly more formal control over the use of a duplex service, the stan-
dard technique is to use a so-called token mechanism. A token is in this context a
conceptual object which gives its owner the right to perform certain functions – for
example, to send data. If there is only one token, then there can only be one service
user at a time who can send data, so the service essentially becomes a simplex ser-
vice (if the token is permanently owned by one party) or a half-duplex service (if
the token can be passed from one party to the other). More generally, tokens can be
used to offer multiplexing so that a channel can be shared among a group of N users,
of which only one has the right to send at any time. This technique is, for example,
used in local area networks which are based on token ring technology [154, 171].

More complex use of tokens can also be relevant in certain types of system.
A well-known example is the ISO OSI Connection-mode Session Service and its
corresponding protocol [139, 140]. Here, the presence or absence of four tokens is
agreed at the time when the connection is established. One of these is a Data Token.
If present, this enables its current owner to send data, thus offering a half-duplex
data transfer service. (Note: The Session Service is assumed to be based on the ISO
Connection-mode Transport Service [137], which is always full duplex.) If the data
token is absent, a full duplex data transfer service is offered. The other tokens, if
present, are used to regulate the control flow in the service, enabling their owners
to set (two sorts of) synchronisation points, and to refuse to release the connection,
respectively.

4.5 Multiplexing and Splitting

4.5.1 Multiplexing

A service whose provider performs a multiplexing function internally combines the
streams of messages which the users regard as being sent via several logical chan-
nels (for example, to different destinations) and sends them via a single logical or
physical channel, after which it separates the streams again and directs them to their
individual destinations. This reverse function is known as de-multiplexing. A figu-
rative illustration of these concepts can be seen in Figure 4.20.

Conceptually, this makes no difference to the formal specification of the service
as seen by the individual user. In practice it will usually reduce the cost of using
the service, as the price of running a service is normally based on the number of
channels which are kept open. Other things being equal, the utilisation of the channel
will also be increased, which may likewise be expected to reduce the cost per user.

Technically speaking, channel multiplexing can be performed in a vast number of
different ways, but from an analytical point of view only the so-called time-division

4.5 Multiplexing and Splitting 103

Fig. 4.20 A communication
system with multiplexing.

� Time

1 3 1 2 4 1 1

 �∆ t1
 �
 �

1 2 3 4 1 2 3 4 1 2

 �∆ t1
 �

Fig. 4.21 Time-division multiplexing.
Above: Deterministic, classical TDM system for four users. Users have opportunities to send with
fixed intervals, here illustrated for user 1.
Below: Non-deterministic multiplexing. The interval between successive opportunities to send
varies randomly, usually as a function of the load on the system. The intervals for user 1 are
illustrated in the figure

multiplexing (TDM) is of real interest. Here, each user of the multiplexed channel
is offered access to the channel during certain periods of time, which may be long
or short according to the type of system and the technique used. The access may be
characterised in a number of ways, of which the most important are:

1. Fairness. If access is fair, all users who have something to send have an equally
good chance of obtaining access to the channel. This has the corollary that a user
who attempts to obtain access infinitely often will sooner or later obtain it.

2. Determinism. If access is deterministic, then the interval between successive
offers of access by the service to a given user is a deterministic function of the
load on the service. In extreme cases the ‘function’ may, of course, be a constant!

An example of a fair, deterministic system is a classical TDM system, in which time
is divided into cycles of, say, Nmax time frames of equal length, and each user is al-
located one frame in each cycle. An example of a fair, non-deterministic system is a
local area network with access to the medium controlled by a CSMA/CD algorithm

104 4 Basic Protocol Mechanisms

Protocol 9

Sender def= (SAPA[0]?x : M → right!(0,x)→ Sender
[]SAPA[1]?x : M → right!(1,x)→ Sender
...
[]SAPA[N−1]?x : M → right!(N−1,x)→ Sender)

Receiver def= (le f t?(k : ZN ,x : M)→ SAPB[k]!x→ Receiver)

Fig. 4.22 Simple multiplexing protocol.

(as in networks using the well-known ISO/IEEE CSMA/CD protocol [152]2 dis-
cussed below) when the network is lightly loaded. When the network is very heav-
ily loaded, then access is no longer fair, as there is no guarantee that a given user
will obtain access at all. The temporal behaviour of these systems is illustrated in
Figure 4.21.

A process-based description of a simple multiplexing protocol is given as Proto-
col 9. This is an extended version of the protocol whose correctness you should have
proved in Exercise 3.3. It is a protocol with centralised control, i.e. such that a cen-
tral process, Sender, controls the acceptance of messages from the various senders.
The messages (in domain M) received via the access points SAPA[0] . . .SAPA[N−1]
are all passed via the same channel to the protocol entity Receiver. To permit their
separation, messages passed via SAPA[k] are marked with a tag k. This tag identifies
the logical channel connecting the sender and receiver. In practical systems, it might
for example be an address identifying the intended recipient, or a reference identi-
fying the conversation concerned; this latter possibility would make it possible to
have several simultaneous conversations going between the same two parties.

With this definition, the sending users appear to be able to obtain access to the
service at random times, and the capacity of the shared service is divided out among
then in a statistical manner, as in a so-called statistical multiplexer. Unfortunately,
the protocol as it stands is very impractical except in very special circumstances. If
the user at SAPA[k] obtains access to the channel, then the user at SAPB[k] must be
ready to accept the message, otherwise the whole system hangs up! For the protocol
to work at all, the receiving users must be coordinated with the sending users in
some way – which is not included in the protocol as defined here.

There are several cures for this disease. One is to insist on a strictly synchronous
system, with the sending and receiving sides controlled by identical clocks, and
where the SAPs are treated in cyclic order, for example as illustrated in Protocol
10. This is the classical TDM case mentioned above. Another technique is for the
receiver to poll each of the potential senders in turn, as it becomes able to receive
a message. This is particularly popular in the Data Link layer of the OSI model;
a well-known example is the Normal Response mode of operation of the HDLC

2 and its commercial implementations, such as Ethernet, thinwire Ethernet, Cheapernet etc.

4.5 Multiplexing and Splitting 105

Protocol 10

Sender def= S[0]

S[i : ZN] def= (SAPA[i]?x : M → right!(i,x)→ S[succ(i)])

Receiver def= (le f t?(k : ZN ,x : M)→ SAPB[k]!x→ Receiver)

Fig. 4.23 Multiplexing protocol using classical TDM.
Here succ(i) is assumed to have the value of (i + 1) mod N, where N is the number of senders
whose traffic is to be multiplexed.

nc[j]cs[j]cs[i] cd[i]

right[i] right[j]left[j]left[i]
S[j]R[j]

SAPA[j]SAPB[j]

Medium

S[i]R[i]

SAPA[i]SAPB[i]

nc[i] cd[j]

Fig. 4.24 Physical arrangement of senders and receivers in a cable-based CSMA/CD system.
Sender S[i] and receiver R[i] are bundled together and connected to the physical medium via a
transceiver (filled box). The dashed box delimits the system components which together provide
the Physical layer service.

protocol [131]. Another important possibility is to introduce independent flow con-
trol via an acknowledgment and/or credit mechanism on each ‘sub-channel’, k, a
technique commonly preferred in the middle OSI layers. This type of control is the
subject of Exercise 4.9. These techniques both enable us to avoid loss of data and
‘hang ups’. A fourth possibility is to discard data if the receiving user is not ready – a
surprisingly common solution in practice. If this solution is adopted, the assumption
is that the loss will be detected by the users and corrected by their protocol.

A typical example of a multiplexing protocol where data are discarded if the
receiver is not ready to receive is the ISO/IEEE Carrier Sense Multiple Access
(CSMA/CD) protocol mentioned above, and described by Protocol 11. This pro-
tocol illustrates a number of interesting principles. Firstly, we notice that the sender
and receiver are each described by a set of Nmax unsynchronised parallel processes.
This reflects the idea that there are actually Nmax independent senders and receivers
distributed over a system. In a physical system which uses the CSMA/CD protocol,
the senders and receivers are in fact distributed along a coaxial transmission cable,
to which they are attached by so-called transceivers, which are circuits for sending
and receiving physical signals. The medium together with the transceivers offers a
Physical layer service for transmitting individual bits, and it is this service to which
access is to be multiplexed.

106 4 Basic Protocol Mechanisms

Unlike the multiplexing protocols considered previously, the CSMA/CD protocol
does not have any centralised form for control over access to the shared service – we
say it is a multiplexing protocol with distributed control. Thus each of the senders
S[i] tries to decide for itself whether it is allowed to transmit via the shared medium.
In Protocol 11, each sender is modelled by a pair of cooperating processes, SUI[i]
and SMA[i]. Process SUI[i] describes the user interface for the sender and SMA[i]
the actual protocol for obtaining access to the medium. The user interface process
accepts one message at a time from the user via a service access point (modelled by
the channel SAPA[i]), passes it on to SMA[i] via channel right, and then waits for a
positive (ACK) or negative (ABORT) response. The medium access control process
assembles the message, x, and the source and destination addresses, src and dst, into
a PDU, in this context known as a frame, which to all intents and purposes is just a
sequence of bits. These are then sent off as described by process SendFrame.

The ISO/IEEE CSMA/CD protocol uses a contention mechanism for controlling
access to the medium. This means that in principle a sender which has something to
send sends it as soon as possible, without waiting for any special message, such as a
polling request or a token, from any of the other senders. In the very simplest case,
often called unrestricted contention, the sender in fact sends the message as soon
as it is generated, without waiting at all. The obvious analogy here is to a group of
people having an eager discussion without a chairman. And just as in the case of
such a discussion, if several senders send at the same time then all their transmis-
sions will get garbled. We say that a collision has taken place. In a contention-based
protocol, the attitude to this is that each sender will sooner or later discover that
its transmission failed due to a collision, and will, after waiting a while, try to re-
transmit its message. After a number of attempts, the message will presumably get
through, unless of course the system is overloaded or one of the senders has a defect
and never stops transmitting3.

Contention protocols offer a form of what is known as statistical multiplexing,
where the capacity of the multiplexed service is divided out among the senders in
a non-deterministic manner. Their analysis (see, for example, Chapter 4 in [11])
is usually based on the theory of discrete-time Markov chains, which we shall not
consider in detail here. In the case of unrestricted contention protocols, this analysis
yields the intuitively obvious result that unless the generated traffic (number of new
messages generated per unit time) is very moderate, then unrestricted contention
is not a very effective method, leading to many collisions and long delays before
a given message in fact gets through. Most modern contention protocols therefore
require the senders to follow a more disciplined scheme of behaviour. One clear
improvement is to insist that each sender listens to find out whether another sender
is busy transmitting, before itself starting a transmission. If the medium is occupied,
then the sender must wait until the medium becomes free. This is known as the
Carrier Sense Multiple Access (CSMA) principle.

However, even if each sender waits for the medium to be free before starting to
send, it is still possible for several senders to start at approximately the same time.

3 Most of us have a colleague who can suffer from this defect during discussions, too.

4.5 Multiplexing and Splitting 107

Protocol 11

Sender def= (S[1] ||| S[2] ||| . . . ||| S[Nmax])

S[i : N1]
def= (SUI[i]� SMA[i])

SUI[i : N1]
def= (SAPA[i]?(dst : N1,x : M)→ right!(i,dst,x)→

(right?a : {ACK}→ S[i]
[]right?a : {ABORT}→ S[i]))

SMA[i : N1]
def= (le f t?(src : N1,dst : N1,x : M)→ nc[i]→

SendFrame[i, [],enframe(src,dst,x),0])
SendFrame[i : N1,sent,rest : bit∗,retry : N0]

def= (if rest = []
then le f t!ACK
else (right!(hdrest)→ SendFrame[i,sent̂(hdrest),tlrest,retry]

[]cd[i]→ SCD[i, JAM,sent̂rest,retry]))
SCD[i : N1, jam, f : bit∗,retry : N0]

def= (if jam = []
then SRA[i, f ,retry]
else right!(hd jam)→ SCD[i,tl jam, f ,retry])

SRA[i : N1, f : bit∗,retry : N0]
def= (if retry < Rmax

then wait(rand(2retry) · t0[i])→ nc[i]→
SendFrame[i, [], f ,succ(retry)]

else le f t!ABORT→ SMA[i])

Receiver def= (R[1] ||| R[2] ||| . . . ||| R[Nmax])

R[i : N1]
def= (SAPB[i]?s : {SETUP}→ GetFrame[i])

[]cs[i]→ SkipFrame[i])

GetFrame[i : N1]
def= (cs[i]→ le f t?b : bit→ AccFrame[i,〈b〉]

[]nc[i]→ GetFrame[i])
AccFrame[i : N1, f : bit∗]

def= (cs[i]→ le f t?b : bit→ AccFrame[i, f̂〈b〉]
[]nc[i]→ (if dest(f) = i

then SAPB[i]!deframe(f)→ R[i]
else GetFrame[i]))

SkipFrame[i : N1]
def= (cs[i]→ le f t?b : bit→ SkipFrame[i]

[]nc[i]→ R[i])

Fig. 4.25 CSMA/CD multiplexing protocol.

In particular, this can happen because in a real network the senders are separated by
a finite distance, and the physical signals therefore take a finite time to propagate
between them. Those senders which have not yet been reached by the transmitted
signal continue to believe that the medium is free, and may therefore themselves
start to transmit. This phenomenon is illustrated in Figure 4.26, which shows the
progress of the signals in space and time for two senders who both have something to
send. In the more effective CSMA/CD protocols, the CSMA mechanism is therefore
supplemented by Collision Detection (hence the CD in the name), which leads to the

108 4 Basic Protocol Mechanisms

A

B

Distance

Time

Random
retransmission delay

Random
retransmission delay

Medium
occupied

Transmission
starts when
medium free

Transmission
starts when
medium free

CD time

CD time CE time

CE time

Fig. 4.26 Operation of the ISO/IEEE CSMA/CD Medium Access protocol.
For a given sender (A or B), full lines indicate periods during which the sender is transmitting,
dashed lines periods during which it observes that another sender is transmitting, and dotted lines
periods during which it detects no activity in the medium. The skew arrows indicate how the signals
propagate along the medium.
CD time is the time required for collision detection. CE time is the time required for collision
enforcement (jamming).

transmission being broken off as soon as possible, if the sender detects that another
sender is transmitting at the same time as itself.

These mechanisms are described by the process SendFrame[i, . . .] of Protocol
11. The progress of this process is controlled by two events, nc[i] and cd[i], which
in reality are signals generated by the transceiver which joins the sender S[i] to the
medium. Event nc[i], for No Carrier4, indicates that signals transmitted by another
sender are not currently passing through the medium under the sender in question.
When nc[i] occurs, transmission of the frame by S[i] is allowed to start.

Likewise, cd[i] indicates that the transceiver in system i has detected a collision.
As discussed above, this happens if several senders independently react to nc signals
from their respective transceivers, and begin to transmit a frame at about the same
time. If cd[i] occurs, transmission of the current frame is broken off as soon as
possible, a standard bit sequence known as a jamming sequence is transmitted so
that all parties are made aware that a collision has taken place (process SCD), and
retransmission is attempted. If neither nc[i] nor cd[i] is present, another sender is
busy, and SendFrame[i, . . .] waits. The Physical layer is constructed in such a way
that it is not possible for both nc[i] and cd[i] to occur at the same time.

Retransmission, described by process SRA[i, f ,retry], is unusual in the CSMA/CD
protocol because it follows a stochastic algorithm. Here we have to extend the no-
tational conventions of CSP somewhat in order to describe what happens: the event
wait(t) is assumed to correspond to a delay of t time units, and the function rand(d)

4 In the actual ISO/IEEE CSMA/CD protocol, it is the absence of the signal cs (Carrier Sense)
which indicates that the medium is free.

4.5 Multiplexing and Splitting 109

to a value chosen randomly in the interval [0;d[. Thus SRA[i, f ,retry] waits a time
chosen randomly in the interval [0;2retry[· t0[i], where t0[i] is some arbitrary time
characteristic for S[i]. When this randomly chosen retransmission delay has passed,
a new attempt to send the frame is made as soon as the medium again appears free.
If this attempt also ends in a collision, a new waiting period starts, with the re-
transmission delay chosen randomly from an interval twice as large as before. This
procedure continues until either the whole frame is sent, in which case a positive
response is sent back to the user interface, or until Rmax attempts have been made,
in which case a negative response is sent back.

The reason for doubling the average retransmission delay on each failed attempt
merits some discussion. Random selection of the retransmission delay from some
fixed interval, say [0; t0[, makes it highly improbable that two senders who are in-
volved in a collision will both try to retransmit at the same instant on their next
attempts. However, when the system is very busy, there may be many senders trying
to send frames. So even if a sender manages to avoid colliding with exactly the same
sender as last time, it may collide with one of the others. Analysis of this situation
(see for example Chapter 4 in [11]) shows that when the (new) traffic generated by
the users exceeds a certain value, then the retransmissions themselves cause so many
extra collisions that the throughput of the system actually begins to fall as the load
of new traffic rises further. This leads to instability in the system, which can only be
avoided by reducing the rate of retransmission as the load increases. Doubling the
average retransmission delay for each failed attempt is a simple way of doing this.
The technical term for this is Binary Exponential Backoff (BEB); or, if the doubling
process terminates after a certain maximum number of attempts, as in the case of
the ISO/IEEE CSMA/CD protocol, truncated BEB.

The receiver processes, described by R[i] are much simpler. These are controlled
by the signals cs[i], which indicates the presence of an arriving transmission, and
nc[i], which indicate the absence of such a transmission. These signals are mutually
exclusive. An SDU is only accepted, and passed to the user via channel SAPB[i],
if the user has indicated by sending a SETUP message that it is willing to accept
one. On receiving such a message, the receiver begins to accumulate bits from the
Physical layer as soon as this is possible (indicated by signal cs[i]), and continues
until the transmission stops. If the accumulated bits, f , represent a PDU intended
for this receiver (dest(f) = i), the contents of the PDU are passed on to the user;
otherwise the receiver waits until a new transmission begins, and tries again. If the
user has not indicated that it can accept an SDU, or if the PDU is intended for
another destination, then it is ignored. As can be seen, this scheme of operation
relies on all the receivers receiving all transmissions, and filtering off those which
do not concern them. This is typical of multiplexing techniques based on distributed
control.

110 4 Basic Protocol Mechanisms

Fig. 4.27 A communication
system with splitting.

Protocol 12

Sender def=S[0]

S[i : ZN] def=(SAPA?x : M → right[i]!x→ S[succ(i)])

Receiver def=R[0]

R[i : ZN] def=(le f t[i]?x : M → SAPB!x→ R[succ(i)])

Fig. 4.28 Simple splitting protocol. Here succ(i) is assumed to have the value of (i + 1) mod N,
where N is the number of channels among which the traffic is split.

4.5.2 Splitting

A service which offers splitting does the ‘opposite’ of one which offers multiplex-
ing: It internally divides the messages to a single destination among several logical
or physical channels, and recombines them at the destination to produce a single
stream of messages to be passed to the service user. This is sometimes known as
striping or downward multiplexing, while ‘ordinary’ multiplexing is known as up-
ward multiplexing. Splitting is illustrated in Figure 4.27. As with multiplexing, split-
ting makes no difference to the logical properties of the service, but in practice it is
used to increase the throughput or the reliability available from the service. Splitting
may also reduce the costs of providing a given service, since it may be significantly
cheaper, for example, to buy (or hire) N pieces of equipment, each giving bandwidth
B, than to buy (or hire) one piece of equipment providing bandwidth N ·B.

A simple example of a protocol for this purpose is given as Protocol 12. In this
example, the channels of the underlying service are implicitly assumed to have the
same capacity, and are used cyclically. This is often denoted Round Robin (RR)
striping. RR striping makes it easy for the service to deliver the data in FIFO order,
since the next SDU arrives in the PDU on the (cyclically) next channel. However,
in practical systems it may also be important to provide fair load sharing among
the channels, in the sense that (measured over a long period) all channels carry the
same proportion of their capacity. Two simple strategies which ensure this are:

4.5 Multiplexing and Splitting 111

Protocol 13

Sender def=S[0, [q,0,0, . . . ,0]]

S[i : ZN ,DC : Z
∗] def=(SAPA?x : M → right[i]!x→

(if size(x) < DC(i)
then S[i,DC † [i �→ DC(i)− size(x)]]
else S[succ(i),DC † [i �→ DC(i)− size(x),

succ(i) �→ DC(succ(i))+q]]))

Receiver def=R[0, [q,0,0, . . . ,0]]

R[i : ZN ,DC : Z
∗] def=(le f t[i]?x : M → SAPB!x→

(if size(x) < DC(i)
then R[i,DC † [i �→ DC(i)− size(x)]]
else R[succ(i),DC † [i �→ DC(i)− size(x),

succ(i) �→ DC(succ(i))+q]]))

Fig. 4.29 Fair splitting protocol using SRR strategy. Here q is the size of the data quantum added
to each channel in each round, and size(x) is the size of the message x.

Random Stripe Selection (RSS): Random selection of which channel to use
next ensures a statistically fair distribution of load on the N channels.

Shortest Queue First (SQF): A queue is maintained for each channel, and the
next SDU supplied by the user is added to the shortest queue. Large SDUs take
a long time to transmit, and so cause a queue to build up on the relevant channel,
so this strategy maintains equal loads on all channels in a self-regulating fashion.

Unfortunately, neither of these strategies maintains FIFO ordering, so if sequence
preservation is required, then it will be necessary to add sequence numbers to the
PDUs and to introduce (possibly substantial) buffering in the receiver. In some types
of network, such as ATM networks where PDUs have a fixed size and cannot be
expanded to contain additional PCI, this is not acceptable.

To avoid this problem, Adiseshu et al. proposed the Surplus Round Robin (SRR)
strategy [1], based on a fair queuing algorithm known as Deficit Round Robin [116].
The basic SRR protocol is shown as Protocol 13 in Figure 4.29. In this protocol, the
state of the sender and receiver are described by the number of the channel currently
in use, i, and the free capacities of the N channels, DC. In each round of operation,
during which the sender cycles through all N channels, the free capacity of every
channel is increased by a data quantum, q, corresponding to the desired average
load. It is assumed that q is at least as big as the size of the largest PDUs. When a
PDU of size s is sent on a given channel, the free capacity of that channel is reduced
by s. If the free capacity of the channel is still positive, the next PDU is sent on the
same channel; otherwise, the next channel is used. The receiver follows the same
algorithm, so as to maintain correct sequencing in the final data stream produced at
SAPB.

As can be seen, this strategy requires no PCI to be added to the PDUs, and works
well as long as no data-PDUs get lost. To avoid loss of ordering due to loss of a

112 4 Basic Protocol Mechanisms

8 7 6 5 4 3 2 1
7 5

8 6

3 1

4 2

R
3

3
R

8 7 6 5 4 3 2 1
7 5

8 6

3 1

4 2

R
3

3
R

8 7 6 5 4 2 1
7 5

8 6

1

4 2

R
3

3
R

Channel 0

Channel 1

(a)

(b)

(c)

Fig. 4.30 Resynchronisation after a lost data-PDU in the SRR protocol.
(a) Normal transmission. The stream of PDUs is divided among the two channels. For illustration
purposes, the PDUs are all assumed to be the same size. The mark-PDUs are shaded.
(b) Normal receipt. The incoming streams of data-PDUs on the two channels are merged and the
mark-PDUs are discarded.
(c) Resynchronisation after data loss. When data-PDU no. 3 is lost, the receiver receives the mark-
PDU announcing the start of round 3 on channel 0 during round 2. Instead of delivering the next
data-PDU (no. 5) to arrive on channel 0, it proceeds directly to channel 1.

data-PDU on one of the channels, synchronisation marks (mark-PDUs) are inserted
on all channels at regular intervals, for example at the start of every m rounds of
operation. Each mark-PDU contains the number of the current round. If a mark-
PDU announcing round r +1 arrives on channel i when the receiver expects a PDU
from round r, then a data-PDU on that channel must have been lost, and the next
data-PDU on that channel is therefore not delivered until the following round of
transmission. This technique, illustrated in Figure 4.30, is sometimes called implicit
numbering, as the sequence numbers needed to ensure synchronisation are sent sep-
arately from the data-PDUs. Note that the technique does not include retransmis-
sion, so missing data-PDUs are never recovered. Obviously, this is only suitable for
providing a connectionless-mode service.

4.6 Segmentation and Reassembly

When a service provider uses the segmentation function, the sending protocol entity
divides the SDUs passed to it by the service user into smaller portions for trans-
mission via the underlying service. The receiving protocol entity then performs the
reassembly function, to produce the SDUs originally generated by the sending user,
before these are passed to the receiving user, as illustrated in Figure 4.31. All this is

4.6 Segmentation and Reassembly 113

Layer
(N)

Layer
(N-1)

Layer
(N)

Layer
(N-1)

Fig. 4.31 A system with segmentation and reassembly. An (N−1)-SDU passed down from layer
N is divided into three (N−1)-PDUs, each with their own (N−1)-PCI (dark shading). On receipt
by the receiving system, the PCI is removed, and the data are reassembled to form the received
(N−1)-SDU which is passed to the receiving user in layer N.

invisible to the users of the service, whose logical properties are unaffected. These
functions are essentially practical tricks to avoid having to send very long PDUs.
There are three reasons why we might want to do this:

1. Long PDUs offer a greater risk of the PDU being struck by errors, since error
probabilities are usually more or less proportional to the length. If errors do oc-
cur, long PDUs also give a greater overhead on retransmission.

2. The protocol may implement a form of multiplexing where the transmission of
long PDUs on one of the multiplexed channels would prevent transmission on
the other channels.

3. The underlying service via which the PDUs are transmitted may have restrictions
on the size of SDU it is willing to accept. (Remember that PDUs in one layer
appear as SDUs to the layer underneath!) This is because the underlying service
must buffer each SDU until all of it has been passed to the remote service user,
and there will be practical limits on how much buffer space is available.

The modifications to Protocols 1 to 6 in order to permit segmentation and reassem-
bly are basically very simple. When the sending protocol entity accepts an SDU via
SAPA, it divides it into segments, before sending each of them in a numbered PDU.
The receiver checks the incoming PDUs for sequence preservation as usual, but does
not pass their SDU content to the user via SAPB until a whole SDU has arrived. For
this to work satisfactorily, each PDU must contain an indication of whether it is the
last PDU in an SDU. This information is part of the PCI.

A more complicated situation arises when segmentation has to be performed over
a network which is composed of a number of interconnected sub-networks, as in
Figure 4.32. This is, for example, the case in so-called internet protocols, such as the
ISO connectionless internet protocol [142] and the Internet/DoD IP protocol [210],
where the aim is to transfer data across such a composite network. In general, as
illustrated in the figure, the individual sub-networks may have different restrictions
on maximum PDU size.

114 4 Basic Protocol Mechanisms

G12

1

2

3

4

5

6

S

R

GG1212

GG2323

GG2424 GG4646

GG5656

GG3535

Fig. 4.32 A system of interconnected sub-networks.

The figure shows six sub-networks which in the examples in the text are assumed
to permit the following maximum PDU sizes (in octets):

Sub-network Max. PDU size Sub-network Max. PDU size
1 1536 2 512
3 1000 4 256
5 1450 6 1784

Systems Gi j are gateways on the boundaries between sub-networks.

Two strategies are then available for segmentation. In the first of these, the origi-
nal sender must segment all SDUs to the smallest maximum size of PDU permitted
by the sub-networks through which they may pass. In general this means either that
the original sender must know the route which the PDUs will follow through the
network, or that all SDUs must be segmented into the smallest size permitted by
any of the sub-networks in the network. In the network in Figure 4.32, this would
for example mean that an SDU to be sent from S to R would be segmented into
PDUs not bigger than 512 octets if S knew that all PDUs to R would be routed via
sub-networks 1, 2, 3, 5 and 6 (in this instance not the most direct route!), or into
PDUs not bigger than 256 octets if the route were unknown.

In the alternative strategy, PDUs are divided up into even smaller pieces when
they reach the boundary of a sub-network which only permits smaller PDUs to be
transmitted. This subdivision takes place in the so-called gateway systems, which
lie on the boundaries and are responsible for transferring data between sub-networks
with possibly different properties. This strategy, known as resegmentation, means
that the original sender only needs to know the requirements of the sub-network to
which it is itself connected. But it carries the risk that the original SDUs may be
fragmented into many small pieces if they pass through a series of sub-networks
which permit smaller and smaller maximum PDU sizes, unless these sizes are con-
venient multiples of one another. Suppose, for example, that an SDU of size 2000
octets is to be sent from S to R, and that the PCI added to each segment of the
SDU is always of length 64 octets. Then the SDU would be fragmented as shown in
Figure 4.33(a), if it were sent via sub-networks 1, 2, 3, 5 and 6 using this strategy.

4.6 Segmentation and Reassembly 115

Fig. 4.33 Fragmentation of
SDUs due to resegmentation.
The figure shows the sizes
in octets of the fragments of
an SDU of size 2000 octets
transmitted from R to S via
sub-networks 1, 2, 3, 5 and 6
of Figure 4.32.
(a) Simple resegmentation on
passing to a network where
smaller PDUs are required.
(b) Resegmentation combined
with partial reassembly on
passing to a network where
larger PDUs are permitted.

(a) S Sub-network R
1 2 3 5 6

2000 1472 936 448 448 448 2000
448 448 448
40 40 40

536 448 448 448
88 88 88

528 528 448 448 448
80 80 80

(b) S Sub-network R
1 2 3 5 6

2000 1472 936 448 1384 1384 2000
448
40

536 448
88 616 616

528 528 448
80

Note that sub-network 3 could carry the 2000 octets of SDU in five PDUs (four
with the maximum segment size of 448 octets and one with 208 octets), but that
seven are in fact used. A common way to counteract this fragmentation is to perform
partial or complete reassembly on reaching the boundary of each sub-network which
again permits larger SDUs to be transmitted. This can be done in several ways. One
simple style of partial reassembly is illustrated in Figure 4.33(b): as many complete
PDUs as possible are reassembled into a single PDU on the boundary between sub-
networks 3 and 5 (and in principle again between 5 and 6).

Although this technique alleviates the problem, fragmentation may still occur if
the sizes of the PDUs and SDUs do not ‘match’ one another. Minimal fragmenta-
tion can only be achieved by completely reassembling the original SDU on each
sub-network boundary, and then re-segmenting it for further transmission. This can
easily lead to much duplication of effort, with each SDU being segmented and re-
assembled several times as it passes through the network. Moreover, for this to be
possible at all, all the gateways between networks must be capable of reassembling
the entire original SDU. From the very nature of things, this is rather unlikely.

In systems with dynamic buffer allocation, reassembly offers an interesting pos-
sibility for deadlock. Imagine a situation where we have N buffers allocated between
M logical channels (with N > M). Then suppose we receive N PDUs, none of which
makes it possible to pass a SDU to a user. Perhaps we are missing exactly the last
PDU needed to complete one of the SDUs. But now we have nowhere to put it if it
arrives. We are obliged to discard it, and the system is deadlocked. Not very surpris-
ingly, this is known as reassembly deadlock. The only way out is to throw away one
of the incompletely reassembled SDUs, so as to release some buffers; however, the
PDUs in these buffers will normally have been acknowledged, so evidently we can
only escape from the deadlock by losing data.

116 4 Basic Protocol Mechanisms

Prioritised Queue.

PQueue def= (le f t?x : LD→ (PQueue� Lcell[x])
[]le f t?y : HD→ (PQueue� Hcell[y]))

Lcell[x : LD] def= (right!x→ B1
[]le f t!x→ le f t?y : HD→ Hcell[y])

Hcell[y : HD] def= (right!y→ B1
[]right?x : LD→ right!y→ Lcell[x])

B1 def= (le f t?x : LD→ Lcell[x]
[]le f t?y : HD→ Hcell[y])

Fig. 4.34 A prioritised queue with two levels of priority. Here LD is the domain of low priority
messages, and HD the domain of high priority messages.

Since recovery from reassembly deadlock in general causes data loss, it is nor-
mally preferable to use a strategy of deadlock avoidance. It is exactly for this reason
that many services limit the size of SDUs which they are willing to handle. If we
know what this maximum size is, then we can choose our buffer allocation algo-
rithm so that it will always give each channel at least this maximum size, or else
nothing at all. Allocation of buffer amounts between zero and the maximum SDU
size is dangerous and should be avoided. Better to have no buffers at all – then at
least we can refuse incoming SDUs from the very first PDU in the SDU, so that we
do not risk having to discard acknowledged PDUs later.

4.7 Prioritisation

The idea of having a prioritised service is to allow some data streams to be dealt
with more quickly than others. In most of our previous examples of protocols, this
has been a ‘non-problem’, since our process descriptions have implicitly assumed
that we only have one stream of data passing along our logical channel, and that
all PDUs can be accepted by the underlying service (according to our convention, at
channel le f t) without having to be buffered by the protocol entity. We have therefore
no concept of waiting to send, and therefore no concept of priority. Likewise, at the
receiver, we only consider one stream of data, and assume that the receiving user
is ready to accept whatever comes. To introduce the idea of waiting, we need to
introduce a queue between the service access points for the user and the underlying
service.

Some examples of simple, non-prioritised queues (disguised as sequential, seque-
nce-preserving buffers) have been given in Chapter 2. A two-level priority queue,
as for example would be required for modelling the OSI concepts of Normal and
Expedited data, is shown in Figure 4.34. For each value accepted at the le f t (input)
channel of the queue, a new queue element is created, which behaves like Lcell if
the value is in LD, the domain of low priority messages, and like Hcell if the value

Further Reading 117

is in HD, the domain of high priority messages. If an Hcell process is on the left of
an Lcell process, they swap contents, and the Hcell process continues like an Lcell
process and vice versa. Thus the high priority messages work their way forward in
the queue.

Further reading

The protocol mechanisms described in this chapter are the ones defined in an ab-
stract manner in the OSI Basic Reference Model [133], and further information can
be sought in the same references as given in Chapter 3. At this stage, you might also
like to look at some real protocols, in order to find out for yourself what mechanisms
are used. A good place to start is the ISO OSI Transport Protocol [138], which (since
it includes 5 variants) uses a particularly large selection of mechanisms: Start with
the short introduction given in Chapter 9 of this book, and go on to the actual text of
the ISO standard. Other ISO OSI protocols are described in references [131]– [205].

ISO is, of course, by no means the only source of information about proto-
cols. Telecommunication systems run by Telecom operators follow ITU-T (formerly
CCITT) recommendations (ITU terminology for ‘standards’). Those in the so-called
X-series are particularly relevant to this chapter. This series includes the well-known
X.25 network protocol [129], and the series from X.211 to X.229, which are techni-
cally identical to some of the ISO OSI protocols. Yet other sources of common pro-
tocols are the Internet community, and the UNIXTM community, who make extensive
use of Remote Procedure Call (RPC, or Client-Server) protocols for performing op-
erations remotely in a network. Appendix B gives an overview of the standardisation
situation. There are also a considerable number of ‘industry standards’, promoted
by individual companies or consortia. Many of these have general interest and turn
into international standards if they achieve sufficiently broad acceptance.

Another line of approach is the historical one. For example, you might like to
pursue all the references to the Alternating Bit Protocol in the literature, starting
with the ones given in connection with Protocol 5. This will lead you into the area
of other proof techniques for protocols, as well as illustrating how new mechanisms
develop as time goes by.

Finally, you might like to investigate quantitative properties of some protocols,
such as their throughput and delay in the presence of varying loads of traffic. Gen-
erally speaking, this requires a knowledge of queueing theory and the theory of
stochastic processes. This is not a subject which we pay more than passing attention
to in this book. However, some protocols, especially multiplexing protocols, have
been the subject of intensive investigation from this point of view. Good discussions
of the general theory required are found in [73], while [11] relates the theory more
explicitly to the analysis of network protocols.

118 4 Basic Protocol Mechanisms

Exercises

4.1. A point-to-point protocol uses a (16,12) cyclic block code to detect transmission
errors. The code uses the generator polynomial g(x) = x4 + x3 + x2 +1. Two blocks
of data:

1011011100011000
1000001110001101

(where the leftmost bit in each block corresponds to the highest power of x) arrive
at the receiver. Do these blocks contain errors which are detectable by this code?

4.2. The time taken to send an SDU of size L bits between two systems physically
separated by a data link of length D, through which data can be passed at B bits/unit
time, can be expressed as:

ts = A+D/C +L/B

where A is the time required to obtain access to the data link via the service in use,
including all delays before transmission starts, and C is the signal velocity in the
medium used to provide the data link.

How large a send window size is required to maintain an average data flow of
2Mbit/s in the cases where:

1. The data link is a geosynchronous satellite data link, offering a transmission rate
of 10Mbit/s, the average access time is 100ms, and the SDUs are of size 1000
bits.

2. The data link is a 140Mbit/s fiber optic point-to-point link over a distance of
100m, the average access time is 10µs, and the SDUs are of size 100 bits.

Assume that the link is error-free, and ignore (or make an estimate of) the time taken
in the receiving system to produce an acknowledgment.

4.3. Prove that the simple polling protocol given as Protocol 2 satisfies the speci-
fication SAPB ≤ SAPA if used over a medium which may corrupt (but not lose or
duplicate) data-PDUs, and which always delivers polling requests without loss or
corruption. Then discuss the ways in which the protocol can fail.

4.4. Give a description in the form of a set of interacting CSP processes of a polling
protocol with timeout analogous to Protocol 4. (Remember that in a polling proto-
col, it is the receiver which has to be controlled by the timeout mechanism.) Then
analyse your proposal to see how it behaves if the timeout period is too short, so
that the receiver polls the sender again when the sender has already sent a PDU in
response to the previous POLL-PDU.

4.5. In Protocol 6, the process QA, which deals with tidying up acknowledged
PDUs contains a test (acks < a < ns). What would be the effect on the protocol
if the first < were changed to ≤? What if the second < were changed to ≤?

Exercises 119

4.6. Discuss the nature of the processes Timer which are used in Protocol 3 and
in Protocol 6. Are they realistic descriptions of what you intuitively understand by
a timer for controlling a timeout mechanism? If not, can you make them more
realistic? (Explain what you mean by ‘realistic’!)

4.7. Prove that the Alternating Bit Protocol given as Protocol 5 satisfies the specifi-
cation right ≤ le f t if it is used over a service S which may corrupt or lose data or
acknowledgments.

Note: This is quite a challenging problem. You may find it easiest first to use
process algebra to reduce the process Sender to:

Sender def=S′[1]

S′[n : Z2]
def=(SAPA?x : M →QB[n,x])

QB[n : Z2,x : M]
def=(right!(n,x)→ (QB[n,x]

�(QB[n,x]
[]right?a : Z2 →

(if (a = n) then S′[n⊕1] else QB[n,x])
[]right?a : E → QB[n,x])))

where⊕ represents addition modulo 2. Then introduce an appropriate filter function,
in order to prove the desired result.

4.8. Develop a more fault-tolerant version of Protocol 7 on the lines suggested in the
main text. It should be resilient to loss and corruption of PDUs (but not necessarily
floating corpses). Consider carefully what a good strategy might be for informing
the user of the service what has happened if there are errors, and build your strategy
into the protocol.

4.9. Develop a CSP process description of a protocol system in which Protocol 9
has been modified to give individual flow control on each sub-channel. (Concentrate
on the problem as given – don’t make things complicated by introducing timeout or
other error control facilities!)

4.10. A token ring local area network essentially offers a service to all its users
by use of a multiplexing protocol. The protocol is controlled by passing a token
between the protocol entities. At any given moment, only the entity which has the
token has permission to transmit. At the end of its transmission (or if it has nothing
to transmit), it passes the token to the next protocol entity in cyclic order round the
(physical) ring. Develop a CSP process description of a simple token ring of this
type.

First, try to solve this problem without considering whether the receiving entity
actually can receive the data and pass them to its associated user (i.e. under the
same assumptions as lie behind Protocol 9). Then, when you feel you have man-
aged this, add flow control, so that the current receiving entity can send a positive
acknowledgment back to the entity which is currently sending, if it could accept

120 4 Basic Protocol Mechanisms

the PDU, and can send a negative acknowledgment if the PDU was refused. Ignore
retransmission – it is not normally used in token rings.

Chapter 5
Multi-peer Consensus

“Behold how good and joyful a thing it is,
brethren, to dwell together in unity!”

Psalm 133, Book of Common Prayer.

In a multi-peer service, a number of special complications arise from the need to
guarantee that all active users of the service have the same picture of their common
global state. The general problem is usually said to be one of reaching agreement
or consensus on a value or set of values. This can arise in a number of somewhat
different ways:

1. One party may need to distribute a given value or set of values to a group of
others. This is the problem of achieving a multicast or broadcast service already
touched upon in previous chapters.

2. Several parties may need to agree on which one of them is to take over a particular
rôle, say as the master or supervisory agent, in a subsequent protocol. This is
generally known as election.

3. Several parties may need to agree on an action to take, for example whether to
save some changes to a database or not. This is generally known as the problem
of deciding on commitment to the action.

4. Several parties may need to agree on a value for some common variable, such as
the time of day.

Obtaining consensus among several parties is particularly difficult because the in-
dividual parties may behave in different ways, offer different values or even fail
completely during the course of trying to reach agreement. As we shall see, this
makes multi-peer protocols for these purposes comparatively complicated.

Because any of the above forms of consensus will require some sort of exchange
of messages between n > 2 parties, the combinatorial nature of the task also mer-
its attention. Simple strategies, such as directly sending messages to all the other
participants, require a network topology which is a complete graph. Exchange of
messages between all participants requires O(n2) messages. It is therefore impor-
tant to analyse multi-peer protocols in order to discover their inherent complexity,
and to attempt to reduce these requirements by the design of more elegant protocols.

121

122 5 Multi-peer Consensus

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

��

�
���

 �
���

�
�

�
�

�

�

�

�
�
�
�
�!

�
���

��
��	

�
�
�
�
�"

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
���

�
��	

�
�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�
�

�

��
���

Fig. 5.1 Broadcast strategies. Left: Rooted bush in a fully connected network; Centre: Span-
ning tree; Right: Degenerate tree (chain)

5.1 Reliable Broadcasts

The problem with broadcasting (which in what follows we shall use as a general
term, thus including multicasting) is to make it reliable in the presence of faults,
so that at least all correctly functioning members of the invoked group receive the
message. Many simple systems (in particular local area networks), provide a broad-
cast service which only works correctly if the members of the invoked group in fact
are unoccupied with other activities. The broadcast fails to reach a member if, for
example:

• Its buffer for receiving messages is full,
• Its physical interface to the network fails to respond to the arrival of the message,
• In a contention network, an undetected collision occurs.

In CSMA/CD-type networks, the sender would be unaware that these faults had
occurred.

If the underlying service is a point-to-point one, the broadcast must, as previously
mentioned, be simulated by a series of transmissions to the intended recipients. If
the network is fully connected, this is simple: the originator sends directly to each
member of the invoked group in turn. In more restricted topologies (and indeed for
efficiency reasons in a fully connected network), it will usually be necessary to use a
strategy in which the message is sent down the branches of a more general spanning
tree for the network, with the originator at the root. In extreme cases, this tree may
reduce to a chain passing through all the destination nodes in turn. These cases are
illustrated in Figure 5.1. Note that with a tree of depth > 1, failure of a node will
require the other nodes to take action so that successors to the failed node in the
tree still receive the message. Essentially this requires the reconfiguration of the
spanning tree. All successful protocols for reliable broadcast allow for this.

The protocol which we shall consider in detail is due to Schneider, Gries and
Schlichting [112], and is presented in Figure 5.2 as Protocol 14. The protocol is
intended to provide a reliable broadcast, in the sense that if any functioning process
receives a copy of message m then all functioning processes receive a copy of mes-
sage m, under the following assumptions:

5.1 Reliable Broadcasts 123

1. The underlying communication system is error-free and sequence preserving.
2. Any process can send a message to any other process which has not failed.
3. Processes which fail cease to do anything. This is known as the fail-stop failure

mode.
4. When a process fails, the functioning processes will sooner or later get to know

about this failure.

Following the discussion in the previous chapter, we must suppose that the first as-
sumption is reasonable for all practical purposes. The second assumption implies
that the topology of the communication network is such that communication can be
maintained even if some of the nodes fail. If we postulate, for the sake of example,
that up to t nodes may fail, then the network must provide at least t +1 direct or in-
direct connections between each pair of processes. The third assumption is perhaps
a simplification; we shall return to more complicated modes of failure later in this
chapter. Finally, the fourth assumption is unavoidable if we are to be able to react to
the failure of a process.

In Protocol 14, the process B describes the originator, and R[i, . . .] the i’th re-
ceiver. A receiver can play two rôles, which in the figure are indicated by the value
of its parameter role: If role = i, the receiver plays its normal rôle, while if role = b,
where b 	= i identifies the current originator, then the receiver has taken over the rôle
of originator for the current broadcast, as a result of being told that B has failed.

In this protocol, the originator is assumed to be connected to its associated service
user through the channel SAPA, and to the underlying service via the set of n− 1
channels right[i], where i ∈ {1, . . . ,n}. For simplicity, we denote the set {1, . . . ,n}
by NS. Each of the n−1 receivers is likewise connected to the underlying service via
a channel le f t[i], in such a way that messages passing through right[i] reach le f t[i]
and vice-versa. How the service in fact connects the channels up to one another is,
as indicated above, unimportant here.

In Protocol 14, notations of the form
∐

i∈D right[i]!x→ P are used as shorthand
for the process which makes multiple offers of output via the channels right[i] for
all i ∈D, and then proceeds as process P. Likewise, right[i ∈D]?a : M → P is used
as shorthand for the process which accepts input of a value in the domain M on any
of the channels right[i] for i ∈ D, and then proceeds as process P.

The processes use a number of set-valued arguments to describe the progress of
the broadcast:
sendto The set of processes to which the current message has yet to be sent.
ack f rom The set of processes from which acknowledgments for the current mes-

sage are being awaited.
ackto The set of participating processes that all sent the current message, and to

which acknowledgments must be returned. Note that the originator does
not have any such processes, so this argument is not required. On the
other hand, for the receivers, there can be several processes in this set if
a failure occurs, since the process which takes over the function of the
failed process will send the latest message again to all the failed process’
successors.

124 5 Multi-peer Consensus

Protocol 14

B[b : NS,n : N0]
def=(SAPA?x : M →∐

j∈sset(b) right[j]!(x,succ(n),b)→ S[b,{},sset(b),x,succ(n),b])
S[b : NS,sendto,ack f rom : NS-set,x : M ,n : N0,s : NS]

def=(le f t[k ∈ NS]?(n′ : N0,s′ : NS)→
(if n′ = n
then (if ack f rom = {s′}

then B[b,n]
else S[b,sendto,ack f rom−{s′},x,n,s])

else S[b,sendto,ack f rom,x,n,s])
[]le f t[k ∈ NS]? f : NS→

(if f ∈ ack f rom
then

∐
j∈sset(f) right[j]!(x,n,s)→

S[b,{},ack f rom−{ f}∪ sset(f),x,n,s]
else S[b,sendto,ack f rom,x,n,s]))

R[i,b,role : NS,sendto,ack f rom,ackto : NS-set,x : M ,n : N0,s : NS]
def=(le f t[k ∈ NS]?(x′ : M ,n′ : N0,s′ : NS)→

(if n′ < n
then right[k]!(n′,s′)→ R[i,b,role,sendto,ack f rom,ackto,x,n,s]
elseif n′ = n
then (if role = b∨ (sendto = {}∧ack f rom = {})

then right[s′]!(n,s)→ R[i,b,role,sendto,ack f rom,ackto,x,n,s]
else R[i,b,role,sendto,ack f rom,ackto,x,n,s])

else
∐

j∈ackto right[j]!(n,s)→ SAPB[i]!x′ →
∐

j∈sset(i) right[j]!(x′,n′,s′)→
R[i,b, i,{},sset(i),{s′},x′,n′,s′])

[]le f t[k ∈ NS]?(n′ : N0,s′ : NS)→
(if n′ = n
then (if ackto 	= {}∧ (role = b∨ (sendto = {}∧ack f rom = {s′}))

then
∐

j∈ackto right[j]!(n,s)→
R[i,b,role,sendto,ack f rom−{s′},{},x,n,s]

else R[i,b,role,sendto,ack f rom−{s′},ackto,x,n,s])
else R[i,b,role,sendto,ack f rom,ackto,x,n,s])

[]le f t[k ∈ NS]? f : NS→
(if f ∈ ack f rom
then

∐
j∈sset(f) right[j]!(x,n,s)→

R[i,b,role,{},ack f rom−{ f}∪ sset(f),ackto,x,n,s]
elseif f = b∧ role 	= b∧ sendto = {}∧ack f rom = {}
then

∐
j∈sset(f) right[j]!(x,n,s)→

R[i,b,b,{},ack f rom−{ f}∪ sset(f),ackto,x,n,s]
else R[i,b,role,sendto,ack f rom,ackto,x,n,s]))

Fig. 5.2 Fault-tolerant broadcast protocol

5.1 Reliable Broadcasts 125

The current message is described by the arguments x, which is the ‘text’ of the
message, n, the sequence number, and s, the source of the message.

b

sset(b)

Fig. 5.3 The successor nodes
to b in the tree of processes

The originator, described by B, is very simple to
understand. On receiving a message from a user (as-
sumed attached via channel SAPA), it sends it to all
its successors in the tree – the function sset(b) is as-
sumed to give the set of identifiers of these successors,
as illustrated in Figure 5.3 – and awaits all their ac-
knowledgments. This waiting is described by process
S, which has two possible types of initial event. Firstly,
it may receive an acknowledgment, (n′,s′) for message number n′ from process s′. If
n′ is the sequence number of the current broadcast, then s′ is removed from the set
of processes from which acknowledgments are being awaited. Acknowledgments
for anything except the current broadcast are ignored. When all the acknowledg-
ments have been received, ack f rom becomes empty, and the originator goes back to
behaving like process B, where it can again accept a new message from the user.

sset(f)

f

Fig. 5.4 Reaction to failure in
node f in the tree of processes

Secondly, the originator (in process S) may receive
information that a failure has occurred in process f .
If f identifies one of the processes from which the re-
ceiver expects an acknowledgment, the receiver must
take over the function of f . Just in case f ’s successors
have never received the message (the exact time of f ’s
‘death’ is unknown), the receiver therefore sends the
current message to all of them again, and expects them
to acknowledge it. This is illustrated in Figure 5.4.

The receivers are somewhat more complicated. The
differences arise for two reasons:

1. The receivers can receive messages from the other receivers. This means that
they have to keep track of a set ackto of processes to which they have to send
acknowledgments.

2. The receivers not only have to react to failure of arbitrary receivers, but also to
failure of the originator. If the originator fails, they must take on a special rôle.

For the receivers, there are therefore three initial events which may occur. Firstly,
the receiver may receive a message, (x′,n′,s′). If the sequence number, n′ is ‘before’
the number of the current message, then an acknowledgment is sent at once. If the
number is the same, then the message is a repeat, and must have been sent out as a
reaction to a failure. The receiver must not send the acknowledgment for this until
it has actually completed sending the current message to all its successors in the
tree and has successfully received their acknowledgments. So an acknowledgment
is only sent if this condition is already satisfied. Finally, if the number is ‘after’
the number of the current message, the incoming message must be from a new
broadcast; the receiver will first complete any outstanding acknowledgments for the
current message, and then go on to distribute the new message to its successors in
the tree.

126 5 Multi-peer Consensus

Secondly, the receiver may receive an acknowledgment, (n′,s′), for the message
with number n′ sent to process s′. If this completes all the acknowledgments ex-
pected for the current message, n, then the receiver will in turn send acknowledg-
ments to all those processes from which it received the current message. It also does
this if it is playing the rôle of b when an acknowledgment arrives.

Thirdly, the receiver may receive information that a failure has occurred in
process f . If f identifies one of the processes from which the receiver expects an
acknowledgment, the receiver must, as in the case of the originator, take over the
function of f , send the current message to all f ’s successors again, and expect them
to acknowledge it. If, on the other hand, the failed process is the actual originator
of the broadcast, b, then a more complicated action is required. Not only must the
receiver send the current message to all the successors of b, it must also take over
the rôle of b for the rest of the current broadcast. Finally, if the failed process is
neither b nor in ack f rom, then the failure is ignored.

It is a feature of the protocol that new requests from the user will not be accepted
until the current broadcast is completed. In fact, the receivers exploit this fact in or-
der to deal with new messages in an efficient manner. If it were not the case, receipt
of a message with n′ > n would not necessarily mean that broadcast n was com-
plete, so the receiver would need to keep copies of all outstanding messages until
explicitly told that the corresponding broadcast was finished. The protocol would
thus become much more complex.

Basically, the protocol uses a so-called diffusing computation, a method origi-
nally introduced by Dijkstra [33], in which the message is passed down the tree in a
‘wave’ propagated from the root, and the wave of acknowledgments is passed back
up it. In the absence of failures, this requires 2 · (n−1) steps for n processes, where
a ‘step’ is the transmission of a message or acknowledgment. If a failure occurs, say
in process f , then the predecessor of f in the tree will re-send the message to all
f ’s successors. If there are a number of successive failures, it is reasonably easy to
see that this can at worst result in each process sending the message once to every
other process and receiving at most one acknowledgment from each of them, which
takes at most 2n · (n−1) steps. For this price, the protocol ensures that the message
will be distributed to all functioning processes as long as at least one functioning
process succeeds in receiving the message from the originator.

5.2 Election

Broadcasting is a very one-sided form of consensus in which one process tells the
others which value they are to agree on. In more interesting forms of consensus, all
parties must exchange information with a view to reaching a mutually acceptable
agreement. The simplest example of this is election, where the aim is to choose one
of the processes from the set to perform some particular function, such as to be
master or coordinator.

5.2 Election 127

Fig. 5.5 Message passing in a
Unidirectional Ring

SAPA[i]

right[i]left[i] P[i]

Most protocols for election assume that there is a total ordering among the
processes, and are actually distributed algorithms for finding an extremum of a set.
Typically, the ordering is achieved simply by giving the processes unique numbers.
An efficient algorithm for finding the maximum element of the set of numbers can
then be attained by organising the processes in a logical or physical ring, and send-
ing messages round this ring. Such algorithms are in the literature often known as
algorithms for finding circular extrema.

A simple protocol for this purpose is the one due to Chang and Roberts [24] given
as Protocol 15 in Figure 5.6. This protocol assumes that the ring is unidirectional.
The process with number i in the ordering is described by P[i,active]. It receives
messages on channel right[i] and sends messages on channel le f t[i], as illustrated
in Figure 5.5. We do not make any assumptions about what order the processes
are connected up in – indeed, if we knew this we wouldn’t need the protocol! The
parameter active of process P indicates whether the process is actively taking part
in an election or not.

Elections are started by a user, here assumed attached to P[i, ...] via the channel
SAPA[i], making a request for an election. This results in the i’th process actively
joining the election, and sending an ELECTION message with its own number off
round the ring.

If process i receives an ELECTION message, (ELECTION, j), from a process j,
three cases can be distinguished: If j > i, process j has priority over i, so i will pass
the message on. If j < i, then i should be elected rather than j. There are then two
cases: either i is already actively taking part in the election, in which case it just
ignores j’s bid, or i is not yet active. In the latter case i enters the election, taking
over j’s bid and replacing it with one of its own. Finally, if j = i, i’s bid has been all

128 5 Multi-peer Consensus

Protocol 15

P[i : N0,active : B] def=(SAPA[i]?r : request → le f t[i]!(ELECTION, i)→ P[i,true]
[]right[i]?(e : {ELECTION}, j : N0)→

(if j > i
then le f t[i]!(e, j)→ P[i,true]
elseif j < i∧¬active
then le f t[i]!(e, i)→ P[i,true]
elseif j = i
then le f t[i]!(ELECTED, i)→ P[i,active]
else P[i,active])

[]right[i]?(e : {ELECTED}, j : N0)→
(if j 	= i
then le f t[i]!(e, j)→ SAPA[i]! j→ P[i, false]
else SAPA[i]! j→ P[i, false]))

Fig. 5.6 Election in a Unidirectional Ring.

the way round without being ‘overbid’ by one of the other processes, so i must have
the largest value of all the processes in the ring, and has therefore won the election. It
communicates this result to the other participants by sending an ELECTED message.

Receipt of an ELECTED message, (ELECTED, j), indicates that the election has
been won by process j. If j 	= i then the winner is not the current process; the result
is sent to the local user at SAPA[i], the message is passed on round the ring, and the
current process ceases to participate in the current election. If j = i, an ELECTED
message sent by the current process has been all the way round the ring. The result
is communicated to the local user, and the current election terminates completely.

If only the user attached to the process with the largest number, say m, requests an
election, the protocol terminates after two rounds of the ring. In the first round, the
(ELECTION,m) message circulates and, since m is the maximum value, it returns to
its sender without being overbid. In the second round, m circulates an (ELECTED,m)
message, indicating that it has won the election. Since each full trip round a ring
containing n processes requires n message transfers, the total number of transfers in
this case is 2n.

If only the user attached to process number k, where k < m, requests an election,
then the election terminates after at most three rounds. First, (ELECTION,k) is sent
off by k. As this passes processes with larger and larger numbers, they replace the
number k with their own numbers, until finally the ELECTION message carries the
number m. In the worst case (when m is just on the ‘right-hand’ side of k), this
takes a whole round. m’s (ELECTION,m) message and the subsequent (ELECTED,m)
message must then circulate right round the ring, giving two more rounds before the
election procedure is completed. The total number of message transfers in this case
becomes (3n−1).

More complicated cases arise if several users request an election at more or less
the same time. The best case is when the processes are arranged round the ring in
increasing order. If all processes initiate an election at the same time, each of them –

5.3 Commitment 129

except the process with the maximum number – sends an ELECTION message to its
neighbour, who ignores it because it has a lower number than the neighbour’s own.
The message from process m, on the other hand, is passed all the way round. Thus
(2n−1) ELECTION messages are sent. These are followed by the circulation of the
ELECTED message, making (3n−1) messages in all.

The worst case is when the processes are arranged in decreasing order round the
ring. An (ELECTION, j) message then has to go j steps before reaching a process
which ignores it and refuses to pass it on. Although the election still only takes three
rounds, (n + ∑n

j=1 j) messages are sent, making O(n2) messages in total. However,
Chang and Roberts show that in the average case, only O(n lnn) messages are re-
quired.

Several protocols which improve the worst-case behaviour of Chang and Roberts’
protocol have been given in the literature. Hirschberg and Sinclair [61] present a pro-
tocol which only requires O(n lnn) messages in the worst case, but which is based
on a bidirectional ring, while Dolev, Klawe and Rodeh [34] give a protocol which
requires O(n lnn) messages in the worst case on a unidirectional ring. It is not pos-
sible to improve on this behaviour: It has been formally proved that the lower bound
for both the maximum and the average numbers of messages needed for election in
a ring is O(n lnn) [20, 104].

Practical examples of election appear in many distributed systems. One of the
best known is the selection of the station which is to function as a monitor in local
area networks such as the ISO/IEEE Token Bus [153], and Token Ring [154]. This
station is responsible for monitoring the ring, to ensure that the access control token
is continually present. In the Token Bus, the physical topology of the network is
a bus or tree, so a logical ring is used , while in the Token Ring, the fact that the
physical topology is a ring is exploited directly. The Token Ring uses a protocol
which is essentially the same as Chang and Roberts’, where the ELECTION messages
are called Claim Token frames and the ELECTED messages are called Purge frames.

5.3 Commitment

In many types of distributed application, the parties involved need at some stage to
be certain that they have all carried out a particular sequence of exchanges, in order
to ensure consistency of data. The classic example is of a database describing a num-
ber of bank accounts, where the exchanges of data between service users describe
bank transactions on these accounts, i.e. the transfer of money between them. Ob-
viously, the data are only consistent when a complete transaction has been carried
out, whereas the situation where, say, a sum x has been debited from one account
but not yet credited to another account is inconsistent. Amongst other things, it is
only meaningful to set synchronisation points (or, of course, to return to them after
an error) when the data are in a consistent state.

130 5 Multi-peer Consensus

The general problem here is to create agreement between a possibly large number
of parties as to whether a particular change or set of changes in their global state is
to be carried out as a whole or not at all. Such a set of changes is often known as the
commitment unit for the transaction. Of course, the problem also arises when there
are only two users of a service, but can then usually be solved in a simple manner by
the use of confirmed services (possibly implemented using three-way handshake) to
ensure agreement on the beginning and end of the commitment unit, and on whether
the changes are to be carried out (committed) or given up (aborted).

In multi-peer services, the end of the commitment unit is not so easily recog-
nised, since in principle the various users of the service may respond in different
ways, some of them agreeing to perform the changes, while others propose that the
changes should be aborted. Some of them may even fail completely during the exe-
cution of the protocol. Thus there are many ways in which we may potentially arrive
in a situation where it would be unclear what the fate of the commitment unit had
been.

The simplest protocol for dealing with this problem is the so-called two-phase
commit protocol, originally suggested by Gray [54], and subsequently refined by
several others [81, 82, 96]. In the original version, which is strictly speaking a cen-
tralised (or central site) two-phase commit protocol, one of the participants acts as
coordinator, and the others as slaves. A variety of more distributed versions are dis-
cussed by Skeen [117]. The basic protocol is presented as Protocol 16 in Figure 5.7.

In this protocol, the Coordinator protocol entity is assumed to be connected to its
associated service user through the channel SAPA, and to the underlying service via
the set of n channels right[i], where i ∈ {1, . . . ,n}. Each of the n slave protocol enti-
ties, Slave[i], is likewise connected to the underlying service via a channel le f t[i], in
such a way that messages passing through right[i] reach le f t[i] and vice-versa. The
system configuration is shown diagrammatically in Figure 5.8. Whether the under-
lying service connects the channels up pairwise or whether it supplies a multi-peer
service to the n+1 protocol entities is unimportant here.

As in Protocol 14, the notation
∐

i∈rs right[i]!x→ P is used as shorthand for the
process which makes multiple, parallel offers of output via the channels right[i] for
all i ∈ rs, and then proceeds as process P. Likewise, right[i ∈ rs]?a : M → P is used
as shorthand for the process which accepts input of a value in the domain M on any
of the channels right[i] for i ∈ rs, and then proceeds as process P.

In the coordinator process, the sets of indices rs, cs and as describe the complete
set of slave processes, the sub-set which have replied that they are willing to carry
out the transaction, and the sub-set which have replied that they wish to abort the
transaction, respectively. In the first phase of the algorithm, the Coordinator receives
a request from the user to commit the transaction, passes this request to all the slaves
(process Phase1), and collects their responses (process MR). If all the responses are
positive (‘COMMIT’), the coordinator will, in the second phase of the algorithm,
order all the slaves simultaneously to perform the changes associated with the com-
mitment unit (process Phase2C). If any of the responses are negative (‘ABORT’), or
if some slaves do not reply at all, so that timeout occurs, the coordinator will instead

5.3 Commitment 131

Protocol 16

Coordinator def=(C ‖ Timer)\{up}
C def=(SAPA?r : request → Phase1[{1, . . . ,n},{},{},r])
Phase1[rs,cs,as : N0-set,r : request]

def=((
∐

i∈rs right[i]!r)→ up!set →MR[rs,cs,as])
MR[rs,cs,as : N0-set]

def=(right[i ∈ rs]?a : {ABORT}→
(if (cs∪as∪{i}) = rs
then up!RESET → Phase2A[cs]
else MR[rs,cs,as∪{i}])

[]right[i ∈ rs]?c : {COMMIT}→
(if (cs∪{i}) = rs
then up!RESET → SN → Phase2C[rs]
elseif (cs∪as∪{i}) = rs
then up!RESET → Phase2A[cs∪{i}]
else MR[rs,cs∪{i},as])

[]up?t : {TIMEOUT}→ Phase2A[cs])
Phase2C[cs : N0-set]

def=((
∐

i∈cs right[i]!COMMIT)→ SC→Coordinator)
Phase2A[cs : N0-set]

def=((
∐

i∈cs right[i]!ABORT)→ SA→Coordinator)

Slave[i : N0]
def=(le f t[i]?r : request → SAPB[i]!r→ SR[i])

SR[i : N0]
def=(SAPB[i]?a : {ABORT}→ SA→ le f t[i]!a→ Slave[i]

[]SAPB[i]?c : {COMMIT}→ SN → le f t[i]!c→ SPhase2[i])

SPhase2[i : N0]
def=(le f t[i]?a : {ABORT}→ SA→ Slave[i]

[]le f t[i]?c : {COMMIT}→ SC→ Slave[i])

Timer def=(up?s : {SET}→ (up?r : {RESET}→ Timer
[]up!TIMEOUT→ Timer))

Fig. 5.7 Basic Two-phase Commit protocol.

S

SAPB[n]

Slave[n]

SAPB[1]

Slave[1]

SAPA

Coordinator
right[i], i=1..n

left[1]

left[n]

Fig. 5.8 System configuration for the basic 2-Phase Commit protocol

132 5 Multi-peer Consensus

order all slaves who have voted COMMIT to abort rather than complete the transac-
tion (process Phase2A). In other words, a single negative or missing vote from any
slave will cause the commitment unit to be abandoned.

The slaves have a much simpler task. On receipt of a request to commit the
commitment unit, they pass the request on to their associated user, and await its
reply. This reply is then sent back to the coordinator (process SR). If the reply was
negative, the slave can abort the local part of the transaction immediately. This is
imagined to take place in process SA. The details of this process depend critically
on the nature of the changes involved in the transaction, but in general will involve
deleting any changes which would have been made, releasing any resources reserved
for the transaction and so on.

If the slave’s user’s reply was positive, the slave must note that this was the case
(process SN), and then wait for the final decision from the coordinator (process
Sphase2). If this is negative, the transaction is abandoned as above. If it is positive,
the changes associated with the commitment unit are carried out (process SC).

Although not shown in detail here, the process SN is in some ways the most
critical in the whole algorithm. For the algorithm to work successfully even in the
presence of ‘crashes’, it is essential that the coordinator and the slaves agree on a
point of no return, in the sense that they cannot back out of the transaction after this
point. Process SN involves noting, in some form of storage whose contents will not
be destroyed by a crash, sufficient details of the transaction for it to be possible to
carry it out even if a crash occurs. However, the changes involved in the transaction
are not in fact carried out until the final confirmation arrives from the coordinator.

If faults occur, either in the underlying service or in any of the processes in-
volved, before the point of no return is reached, the algorithm will simply result
in the transaction being aborted. If a fault occurs between the execution of process
SN and the termination of the algorithm, a recovery mechanism is assumed to exist
which can ‘see’ from the information noted during execution of SN what the state
of the transaction is. For example, if a slave crashes, it can on recovery see that it
had a non-terminated transaction involving a particular coordinator, and it is then
expected to ask the coordinator what the fate of the commitment unit became. Like-
wise, a crashed coordinator can, on recovery, see its final decision, and repeat it to
the slaves.

Protocol 16 has the property that a coordinator crash after the point of no return
causes the slaves to wait until the coordinator recovers and sends them its final de-
cision. It is therefore known as a blocking commit algorithm. This is not always a
very convenient property, as the resources associated with the commitment unit can-
not be released until the algorithm terminates. Skeen [117] has investigated a series
of non-blocking commit algorithms, in which the slave can continue. Essentially,
these are more fault-tolerant, in the sense that all functioning processes complete
the protocol correctly, even if some of the participants fail by stopping.

The key property of a blocking commit protocol is that a participant has one or
more states in which it itself is willing to commit the transaction, but where it can-
not infer whether the other participants will vote (or already have voted) COMMIT
or ABORT. If the coordinator crashes while the participant is in such a state, then

5.3 Commitment 133

the participant has no means of discovering whether the transaction should be com-
mitted or aborted. Such a state exists for the slaves in Protocol 16 at the beginning
of process Sphase2. Depending on the exact timing of the messages and the crash,
other slaves may have received:

• COMMIT messages. They must then be in states where they will definitely com-
plete (or already have completed) their part of the transaction – so-called commit
states.

• ABORT messages. They must then be in states where they will definitely abort
(or already have aborted) their part of the transaction – so-called abort states.

• No final message from the coordinator at all, in which case they are still in the
state at the start of SPhase2.

We say that the concurrency set of this state (i.e. the set of states which the par-
ticipants can be in when a given participant is in the state) contains both abort and
commit states. This is the dangerous situation where the participant cannot be certain
of the outcome.

Skeen then describes the requirements on a non-blocking protocol by the follow-
ing theorem:

Theorem 5.1. Fundamental non-blocking theorem
A protocol is non-blocking if and only if it satisfies both of the following conditions
for every participant:

1. There exists no local state of the participant such that its concurrency set contains
both an abort and a commit state.

2. All states whose concurrency set contains a commit state are committable states.

A committable state is one in which the participant knows with certainty that all the
other participants have committed or will do so.

The major states of Protocol 16 can be illustrated by the finite-state machines
shown in Figure 5.9(a). The concurrency set of the state wc in the FSM for the co-
ordinator is

⋃
i{qi,wi,ai}, while the concurrency set of the states wi in the FSMs

for the slaves is {wc,ac,cc}
⋃

j 	=i{q j,w j,a j,c j}, so the states w fail to fulfil either
of the conditions of Theorem 5.1. Thus Protocol 16 is a blocking protocol. The
simplest way to create a non-blocking protocol is then to introduce an extra round
of message exchange: After receiving only votes for COMMIT from the slaves, the
coordinator sends a PREPARE, rather than a COMMIT, message to all of them. On
receipt of this, each functioning slave replies with an acknowledgment. On receipt
of all the acknowledgments, the coordinator finally sends a COMMIT message to
all the slaves, who then complete the transaction. This gives a Three-phase Commit
protocol, with the FSM shown in Figure 5.9(b). There is now a state p between w
and c in each participant. The state pi has

⋃
j 	=i{p j,c j} as its concurrency set, and

is therefore committable, while the state wi, which is still not committable, has con-
currency set

⋃
j 	=i{w j,a j, p j}. Thus the requirements for a non-blocking protocol

are now fulfilled.
It is very easy to see that the simple 2-Phase Commit protocol Protocol 16 uses

at most 3 · (n− 1) messages, where there are n participants in total, including the

134 5 Multi-peer Consensus

(a) (b)
Coordinators

Slaves

�

��
qc

�
r∧

i∈rs ri

�

��
wc

�
���

∧
i∈rs COMMIT

∧
i∈rs COMMIT �

���

∨
i∈rs ABORT

∧
i∈cs ABORT

�

��

��

��
cc

�

��

��

��
ac

�

��
qi

�
���

ri
COMMIT

�
���

ri
ABORT

�

��
wi �

ABORT
ε

�
COMMIT

ε

�

��

��

��
ai

�

��

��

��
ci

�

��
qc

�
r∧

i∈rs ri

�

��
wc

�
���

∧
i∈rs COMMIT

∧
i∈rs PREPARE �

���

∨
i∈rs ABORT

∧
i∈cs ABORT

�

��
pc

�
∧

i∈rs ACK
∧

i∈rs COMMIT

�

��

��

��
cc

�

��

��

��
ac

�

��
qi

�
���

ri
COMMIT

�
���

ri
ABORT

�

��
wi �

ABORT
ε

�
PREPARE

ACK

�

��

��

��
ai

�

��
pi

�COMMIT
ε

�

��

��

��
ci

Fig. 5.9 FSM representation of major states of commit protocols.
(a) Two-phase blocking protocol (Protocol 16), (b) Three-phase non-blocking protocol.
FSM state changes marked i

o are triggered by receipt of input message i and cause transmission of
output message o. The symbol ε represents the empty message, and

∧
and

∨
signify respectively

the conjunction and disjunction of receipt or transmission of messages.

coordinator, and that the simple 3-Phase non-blocking protocol sketched above uses
5 · (n− 1) messages. Analysis of commit protocols by Dwork and Skeen [38] has
shown that the absolute lower bound for commit protocols of either type is 2 · (n−
1) messages. However, to achieve this lower bound for a non-blocking protocol
requires a good deal of ingenuity – for details of the resulting protocol, see [38].

There is a wealth of examples of the practical use of commitment protocols, as
the literature on the topic demonstrates. All distributed databases use commitment
in one form or another. Within ISO, a 2-phase commit protocol essentially the same
as Protocol 16 with the addition of recovery facilities, has been standardised as part
of the so-called CCR (Commitment, Concurrency and Recovery) protocol for use
in the Application Layer of OSI systems [189, 190]. In OSI systems, this is specif-
ically used by the Job Transfer and Manipulation protocol to ensure that groups
of remotely running tasks are completed as a whole or not at all [162, 163], and
by the Distributed Transaction Processing protocol for handling distributed trans-

5.4 Byzantine Agreement 135

actions [195–197]. We shall look at both OSI CCR and Distributed Transaction
Processing in more detail in Chapter 10.

5.4 Byzantine Agreement

Although many of the protocols described in this chapter are resilient to processes
stopping – the so-called fail-stop failure mode – all the protocols considered in this
book up to now have the property that they fail if presented with false messages. As
we have seen in Chapter 4, a great deal of effort goes into ensuring that such false
messages cannot arrive due to poor protocol design with respect to PDU lifetimes.
However, in an error-prone system, anything might happen, and the generation of
completely false messages cannot be excluded.

Avoidance of arbitrary false messages (or, in general, arbitrary errors) requires
some form of redundancy, so that some kind of majority voting scheme can be used
to decide what are the genuine messages and what are false. In a distributed system,
the redundancy can be provided by allowing each party to send a copy of his mes-
sage to each of the others. However, in the presence of faults, it is not certain that
all parties actually receive the same information. The problem is to exchange suffi-
cient information between a sufficient number of parties for all correctly functioning
systems to be able to build up the same picture of what the original messages were.

This problem is often formulated as the Byzantine Generals (or interactive con-
sistency) problem, first presented by Lamport, Shostak and Pease [80], and which
we shall formulate as follows:

A commander must send a value to his n−1 lieutenants such that:

IC1. All loyal lieutenants agree on the same value.
IC2. If the commander is loyal, then every loyal lieutenant agrees on the value

which he sends.

A typical group of Byzantine generals, at least one of which looks very suspicious,
is shown in Figure 5.10. The conditions IC1 and IC2 are known as the interactive
consistency conditions. In a computer system, ‘loyal’ systems are ones that work
reliably, and ‘disloyal’ ones are those that may introduce errors into the messages
passed.

Fig. 5.10 Four Byzantine
generals

136 5 Multi-peer Consensus

Essentially, the lieutenants receive a vector of values, v = (v1, . . . ,vn−1), and the
loyal ones must all produce the same value, say v, as result. If the values are Boolean
(for example of the form ‘attack’/‘retreat’), a reasonable choice would be to take the
majority value of the elements of the vector. If the values are in an ordered domain,
the median value would be appropriate. For generality1, we define the value of the
function ma jority(v) as being the value selected by a lieutenant receiving the values
in v. If no value is received from a particular participant, the algorithm should supply
some default, vde f .

5.4.1 Using unsigned messages

Solutions to this problem depend quite critically on the assumptions made about the
system. Initially, we shall assume the following:

Degree of fault-tolerance: Out of the n participants, at most t are unreliable. This
defines the degree of fault tolerance required of the system. We cannot expect the
protocol to work correctly if this limit is overstepped.

Network properties: Every message that is sent is delivered correctly, and the
receiver of a message knows who sent it. These assumptions mean that an un-
reliable participant cannot interfere with the message traffic between the other
participants. It would be reasonable to suppose that this could be satisfied, for
example, by having a fully-connected network topology.

Timing: The absence of a message can be detected. This means that an unreli-
able participant cannot prevent a decision simply by doing nothing. This implies
that the system operates in an essentially synchronous manner, where timeout
mechanisms can be used to detect missing messages.

Note that the assumptions about the network do not prevent the participants from
sending incorrect messages to one another – the generals can lie. Restricting our-
selves to these assumptions is therefore often said to correspond to the use of oral
or unsigned messages. We shall return later to the consequences of making other
assumptions about the system.

The algorithm, of course, defines the behaviour of reliable participants; unre-
liable ones can do what they like! In the form of a CSP process description, the
algorithm (which is recursively defined) becomes rather difficult to understand, so
we present it here in a form more closely following the original (from [80]) as Pro-
tocol 17. We shall refer to the n participants as P0, . . . ,Pn−1, where P0 is the initial
commander.

To see how this works, consider the case where t = 1 and n = 4. In the first step,
the algorithm is performed with t = 1, and the initial commander sends his value v
to all n− 1 other participants. In the second step, the algorithm is performed with
t = 0, and each of the recipients in the previous step acts as commander for a new

1 Please note: this is not meant to be a poor joke.

5.4 Byzantine Agreement 137

Protocol 17

Algorithm OM(n, t), t > 0 :

1. The commander, P0, sends his value to the other n−1 participants, P1, . . . ,Pn−1.
2. For each i, let vi be the value Pi receives from the commander, or else vde f if he receives

no value. Pi then acts as commander in Algorithm OM(n−1, t−1), to send the value vi
to the (n−2) ‘other’ participants, P1, . . . ,Pi−1,Pi+1, . . . ,Pn−1.

3. For each i, and each j 	= i, let v j be the value which Pi received from Pj in step (2), during
execution of algorithm OM(n−1, t−1), or else vde f if he received no such value. Pi then
uses the value ma jority(v1, . . . ,vn−1).

Algorithm OM(n,0):

1. P0 sends his value to the other n−1 participants.
2. Each of P1, . . . ,Pn−1 uses the value he receives from P0, or uses vde f if he receives no

value.

Fig. 5.11 Byzantine Generals protocol for at most t disloyal participants out of n, assuming un-
signed messages.

round of messages, in which each of them sends to the ‘other’ n− 2, from which
it has not received a message. The algorithm then terminates, and the participants
evaluate their final value, as ma jority of all the messages that they have received.

If all the participants are in fact reliable, then it is easy to see that all the lieu-
tenants get 3 copies of the same message, one from each of the other participants.
Suppose, however, that Lieutenant 3 is unreliable. In the first round, Lieutenants 1, 2
and 3 all receive, say v from the initial commander. In the second round, Lieutenant
2 receives v again from 1 (who is loyal), but some arbitrary value, say x from 3.
Lieutenant 2 thus evaluates the final value v as ma jority(v,v,x), which is v, as re-
quired. Likewise in the second round, Lieutenant 1 receives v from 2, and some other
arbitrary value, say y, from 3. So Lieutenant 1 evaluates ma jority(v,v,y), which is
also v. In this case, both conditions IC1 and IC2 are plainly satisfied. The final case,
where the original commander is unreliable, is left as an exercise.

It is a fundamental result that for unsigned messages, i.e. messages which the
participants can alter arbitrarily as they pass them on, the Byzantine generals prob-
lem cannot be solved for n ≤ 3t. Several proofs of this impossibility result can be
found in the literature [45, 105]. The correctness of the algorithm for n > 3t can be
demonstrated by a simple inductive argument over t [80].

Generally speaking, if we have an army where we have to allow for up to t un-
reliable generals, the algorithm proceeds in t + 1 rounds. In the first, we execute
algorithm OM(n, t), and the initial commander sends n− 1 messages, so that each
of the lieutenants receives one. Each of them then acts as commander for an exe-
cution of OM(n− 1, t − 1), in which it sends n− 2 messages. In this round, each
lieutenant therefore receives n− 2 messages, one from each of the other (in the
context of the algorithm) commanders. For each of these n− 2 messages, the lieu-
tenant will act as commander for an execution of OM(n−2, t−2), in which it sends
n−3 messages to each of the ‘other’ lieutenants. In the context of this execution of

138 5 Multi-peer Consensus

OM(n− 2, t − 2), this means the set of lieutenants other than the one from which
it received a message in the previous phase. Each of the n− 1 lieutenants in total
performs OM(n−2, t−2) n−2 times, sending n−3 messages each time. Overall,
algorithm OM(n, t) is performed exactly once, while algorithm OM(n− p, t − p)
(for p ∈ {1, . . . , t}) is performed (n− 1) · · ·(n− p) times, and the total number of
messages sent is:

m = (n−1)+(n−1)(n−2)+ . . .+(n−1)(n−2) · · ·(n− t−1)

Thus m is O(nt), i.e. it is exponential in t. Moreover, as remarked previously, the al-
gorithm requires t +1 rounds, and therefore a time proportional to t +1. Finally, as
shown by Lamport, Shostak and Pease [80] it requires a network whose connectivity
is at least 3t-regular – i.e. such that there are at least 3t disjoint paths between any
participant (network node) and any other. Evidently, this is an expensive algorithm
in terms of resources, but it provides protection against up to t totally unreliable sys-
tems (or generals) out of n, where n > 3t, without putting any special requirements
on the form of the messages.

Further work on the use of unsigned messages by Dolev, Fischer and others has
demonstrated that some of these requirements can be slackened. For example, an
algorithm resistent to t faulty systems out of n, where n > 3t, which uses 4t + 4
rounds and O(n5) messages is given by Dolev and Strong in [35], and one which
uses 2t + 3 rounds and O(nt + t3 ln t) messages by Fischer et al. No absolute lower
bound has yet been demonstrated for the number of messages. However, it is certain
that at least t +1 rounds are required to achieve agreement in the presence of t faulty
systems.

5.4.2 Using signed messages

Whereas there is no solution to the problem using unsigned messages for t unreliable
generals unless n > 3t, if we assume that messages can be made unforgeable by the
addition of a signature which identifies the sender, then the problem is solvable
for any non-trivial combination of reliable and unreliable participants, i.e. for n >
(t +1).

A simple algorithm using signed messages was given by Lamport, Shostak and
Pease [80]. This operates under the same assumptions about the message system
and timing as their algorithm using unsigned messages, and assuming the following
properties of signatures:

Signatures: A signature unambiguously and correctly identifies the signer to any
other participant, and cannot be forged. This implies that a signature prevents a
participant who passes on a message from changing a message in an arbitrary
manner: The participant may fail to pass the message on, but if it makes actual
changes they will be detected.

We shall see in chapter 6 how these properties can be attained in practice.

5.4 Byzantine Agreement 139

Protocol 18

SM[n, t : N0]
def= Commander[n, t] ‖i∈NS (P[i, t,{},NS] ‖ Timer[i])\up[i]

Commander[n, t : N0]
def= (SAPA?v : M →

∐
j∈NS right[j]!(v,{0})→Commander[n, t])

P[i : NS, t : N0,V : M -set, ps : NS0-set]
def= (le f t[i]?(v : M ,ss : NS0-set)→

(if (cardss < t +1)∧ (v 	∈V)
then

∐
j∈ps−ss right[j]!(v,ss∪{i})→

(if V = {}
then up[i]!SET → P[i, t,{v}, ps]
else P[i, t,V ∪{v}, ps])

else P[i, t,V, ps])
[]up[i]?t : {TIMEOUT}→ SAPA[i]!choice(V)→ P[i, t,{}, ps])

Timer[i : NS] def= (up[i]?s : {SET}→ (up[i]?r : {RESET}→ Timer[i]
[]up[i]!TIMEOUT→ Timer[i]))

Fig. 5.12 Byzantine Generals protocol for at most t disloyal participants out of n, assuming signed
messages.

Lamport, Shostak and Pease’s algorithm is given as Protocol 18 in Figure 5.12.
In this figure, we again use notations of the type

∐
j∈s right[j]!y→ P to denote the

process which offers output via the channels right[j] for all j ∈ s and then proceeds
as process P, and we assume that data output via right[j] will be received as input on
channel le f t[j]. The notation ‖i∈s R[i, . . .] indicates parallel composition of instances
of R[i, . . .] for all values of i in the set s. Each participant is identified by a number i
which also functions as its signature, with the commander as number 0. The set of
all subsidiary participants {1..n− 1} is denoted NS, and the set of all participants
including the commander, {0..n−1}, is denoted NS0.

Once again the protocol proceeds in up to t + 1 rounds. In the first round, the
commander creates a message by signing the data v and sends it to all the other
participants. In round k, each participant accepts messages (v,ss) which have k sig-
natures in the signature set ss, and which contain ‘new’ data, i.e. data v which are
not already in the set of received data, V . All other messages are ignored. For each
accepted message, the recipient adds the data v to set V , signs the message by adding
his signature to ss so that it has k + 1 signatures, and sends the message to all the
participants who have not yet signed it. At some stage (indicated in Protocol 18 by
the receipt of TIMEOUT), the participants determine that they will receive no more
valid messages, and they choose a value calculated from the contents of the set V .
In the figure, it is assumed that the function choice(V) evaluates this result.

Proof of correctness follows from the following analysis: If the commander is re-
liable, then the protocol actually terminates after two rounds. In the first round, the
commander sends the message, say (v,{0}), to all the others. Each reliable partici-
pant i then includes v in its set V (which initially is empty) and sends (v,{0, i}) to all
the others except 0 and i. Since they have already all received a message containing

140 5 Multi-peer Consensus

v, no further messages are sent. In this case V only contains one value, namely v,
which is the value sent by the commander. Unreliable participants may of course
send invalid messages (which will be ignored) or fail to send messages. But neither
of these possibilities will affect the content of V . Thus in all cases with a reliable
commander condition IC2 is fulfilled, and from this IC1 follows.

Now consider IC1 if the commander is unreliable. He may then send different
messages to all the others in the first round, and the procedure will then continue
until in round t + 1 messages with t + 1 signatures are circulated. The problem is
then to show that all the reliable participants manage to decide on the same result.
This will be the case if they all construct the same set V . Thus we must show that,
for arbitrary i, j, if i puts a value v into V then so does j. Now i puts v into V when it
receives a message (v,ss) and v 	∈V . If j ∈ ss, then evidently j has already put v into
its own copy of V , so both i and j have v in V . If j 	∈ ss and (cardss < t +1) then i
will send v on to j. On the other hand, if j 	∈ ss and (cardss = t + 1) then there are
no more rounds available. However, since we here suppose that the commander is
unreliable, then at least one of the t +1 signatories to the message must be reliable.
This one must have sent the value v on to j when it first received it. Thus in all cases
where i receives v and puts it into V then j also does so. Thus IC1 is also fulfilled
when the commander is unreliable.

As it stands, Protocol 18 has the same worst-case message complexity as Pro-
tocol 17, and still uses up to t + 1 rounds. However, it does use fewer messages
than Protocol 17 in cases where the commander is reliable, and it enables interac-
tive consistency to be achieved for the minimal non-trivial case n > (t + 1) rather
than n > 3t. Dolev and Strong [36] pointed out that a simple modification reduces
the worst-case number of messages to O(nt). As noted above, the worst case only
occurs when the commander is unreliable, and this is the only case in which partici-
pants can receive messages with different values v. In Dolev and Strong’s algorithm,
each participant will only pass on the first two different values received. This is suf-
ficient to tell reliable participants that the commander is unreliable, and they can
then choose a default value, vde f , which is the same for all participants.

5.4.3 Other forms of Byzantine agreement

A more precise term for the form of Byzantine agreement discussed in detail above
is strong, synchronous Byzantine agreement. In weak Byzantine agreement, the con-
sistency rule IC2 is weakened to:

IC2’: If all participants are loyal, then they all obtain the same value.

This type of consistency is what is required for commitment in a system with Byzan-
tine errors, since the participants are now allowed to choose a result differing from
the commander’s proposal, as long as they all agree. However, weakening IC2 to
5.4.3 does not affect the complexity of the solutions significantly [77]. For example,

5.5 Clock Synchronisation 141

there is still no solution with less than t + 1 rounds, nor is the number of messages
needed to reach agreement reduced.

In asynchronous Byzantine agreement, the assumption that we can put a limit on
the length of time which a step takes is abandoned. This means that we can no longer
use timeout mechanisms to determine that a message is missing. In such systems, we
need to introduce a rule that processes will always send some kind of response when
they receive a message, even if this response merely indicates that they intend to
ignore the received message. However, even if this is done, asynchronous Byzantine
systems have the very unfortunate property, demonstrated by Fischer, Lynch and
Paterson [46], that no consensus can be reached at all if any of the participants fails
by stopping.

Finally, specific versions of Byzantine agreement for use in particular situations
have been developed. An example is the Byzantine agreement algorithm for com-
mitment described by Mohan, Strong and Finkelstein [97], and the algorithms for
clock synchronisation which we discuss in the next section.

5.5 Clock Synchronisation

Some more specialised examples of protocols for reaching a consensus are the tech-
niques for agreeing on what the time is in a distributed system. It is obvious that
this is not a trivial problem, since messages always take a non-zero time to travel
from any process to any other. A message arriving at process Pi can effectively only
provide information about what the time was in the sending process when it was
sent off, not what the time is when it arrives. Worse still, clocks in real systems do
not necessarily run correctly or even at the same speed, so the information being
passed round may not be reliable.

Clock synchronisation algorithms aim to get all (correctly functioning) clocks
within a set of processes to have the same view of what the time is. A basic require-
ment of a correctly functioning clock is that it respects the happened before relation
for a set of events in the set of processes. This relation, often denoted →, is the
smallest relation for which the following rules apply:

Local events: If a, b are events in the same process, and a occurs before b, then
a→b.

Message transmission: If a is the sending of a message by some process, and b
is the receipt of the same message, then a→b.

Transitivity: (a→b)∧ (b→c) ⇒ (a→c)
Non-reflexivity: ¬(a→a)

Thus the relation → is an irreflexive partial ordering of the set of all events in the
system. Interestingly, it also expresses the concept of causal ordering, since if a→b,
then a could potentially have caused b.

142 5 Multi-peer Consensus

Time1 2 5 6 7

1 2 7

1 3 4 5 6 7

P

Q

R

2

6
4

Fig. 5.13 Operation of a Lamport clock. The numbered filled circles indicate events in the individ-
ual processes with the corresponding values of the local clocks. Dashed lines show the transfer of
timestamped messages.

5.5.1 Logical Clocks

A logical clock associates a value in an ordered domain with each event in a system,
and the happened before relation is identified with the ordering relation. We define
a local logical clock Ci in process Pi as a function which associates a value Ci(a) in
an ordered set, V , with each event a in Pi. To be in accordance with the definition
of→, we require:

C1: If a, b are events in the same process, Pi, and a occurs before b, then Ci(a) <
Ci(b).

C2: If a is the sending of a message by Pi and b is the receipt of the same message
by Pj, then Ci(a) < Cj(b).

Any ordered domain will do. If we choose the natural numbers, N, with the usual
ordering, then rules C1 and C2 can be implemented in the following simple way,
using a state variable Ti in process Pi to contain the value of the local (logical) time:

IR1: Before each event in Pi, increment Ti by d, where d > 0.
IR2: Timestamp each message sent by Pi with the current value of Ti. On receipt

of a message with timestamp TM by Pj, set Tj to (max(Tj,TM)+d).

Clocks which follow these rules are usually known as Lamport clocks after their
inventor [75]. The functioning of a Lamport clock with clock increment d = 1 in a
system containing three processes is illustrated in Figure 5.13. Note that a Lamport
clock merely provides a measure of the time which is good enough to be consistent
with the happened before relation, so that it is possible to tell which order causally
related events take place in. An observer who observes the system as a whole can
perhaps see that the clocks in two different processes show quite different times at
some instant; in Figure 5.13, for example, R gets to time 5 while Q still has time 2,
while Q gets to time 7 at about the same instant that R gets to time 6. It is also easy
to convince yourself that the clocks Ti in general run at the speed of whichever one
of them is fastest. But as long as none of this conflicts with our view of which event
happened before which, then there is no problem. Lamport demonstrates in [75] that
this type of logical clock is quite sufficient for many purposes, such as determining

5.5 Clock Synchronisation 143

Time1 2 3 4 5

1 2 3 4 5

1 2 3 4 5 6

P

Q

R

4

21

Fig. 5.14 An event sequence which does not respect causal ordering. In process R, 5 < 6, but the
first of these events cannot have caused the second.

the order in which processes attempt to access a critical region subject to mutual
exclusion.

A significant problem with Lamport clocks is that a→b⇒C(a) < C(b), but the
reverse implication is not true. This means that it is not possible just by looking at
the clock values to see whether one event could logically have caused another. An
example can be seen in Figure 5.14, where the event at time 5 in R is not related
by the → relation to the event at time 6 in R2. This problem arises because only a
single number is used to represent the time. More information is needed in order to
tell the receiving process what the sending process knew about the other clocks in
the system when it sent the message. It would then become clear that the message
arriving at time 6 in R was sent before the message arriving at time 5. Mattern [86],
Fidge [42] and others have proposed the use of vector clocks to solve this problem:
A logical clock C is represented in process Pi by a vector of values, �Ti, whose k’th
element is the latest clock value received from process Pk, and rules IR1 and IR2
above are replaced by:

IR1: Before each event in Pi, increment �Ti[i] by d, where d > 0.
IR2: Timestamp each message sent by Pi with the current value of the vector �Ti.

On receipt of a message with timestamp �TM by Pj, set �Tj[k] to
(max(�Tj[k], �TM[k])+d), for all k.

For vector clocks using these rules, it follows that a→b⇔ �C(a) < �C(b), where the
ordering relation on vectors is defined by:

�x <�y⇔ (∀i · (�x[i]≤�y[i])∧∃i(�x[i] <�y[i]))

This type of logical clock, which gives a true indication of causal ordering, has
been used for implementing distributed algorithms for causal broadcast [13], causal
distributed shared memory [2], distributed debugging and global breakpoints and
checkpoints.

2 In fact, the message arriving at time 6 in R breaks the usual rules of causal ordering, since it
appears both to be able to cause and be caused by the event at time 5

144 5 Multi-peer Consensus

5.5.2 Real time clocks

A clock which in some sense correctly reflects the time as seen by an external ob-
server is generally denoted a real time clock. This is in practice based on a physical
clock, which in principle is incremented smoothly and continuously. We shall de-
note by Ci(t) the time shown at real time t on the physical clock available to process
Pi. The aim of clock synchronisation is to achieve the result that for all reliable
clocks:

∀i, j · (|Ci(t)−Cj(t)| < δ), for some δ � 1

A system of clocks for which this holds is often said to be δ -synchronised.
Even the best physically realisable clocks will in reality suffer from errors:

Clock drift: The clock frequency is not exactly the correct one, so as time passes
the value shown on the clock will drift further and further from the correct time.

Clock variation: The clock frequencies in different clocks are different, so as
time passes the values shown on the clocks in the system drift apart from one
another.

We shall assume that the magnitude of such errors is limited, in the sense that all
clocks fulfil the accuracy condition:

∀i · (|dCi(t)/dt−1| < ρ), for some ρ � 1

When this is true, the drift of the clocks is sometimes said to be ρ-bounded3.
Now let us consider a system where process Pi attempts to adjust its clock in

accordance with messages received from Pj, which we here assume to be a reli-
able clock server containing a perfect clock. All messages sent by the server are
timestamped with the current value of the server’s clock. Suppose the time to send
a message between the two processes is µ , which is bounded below and above:

µmin ≤ µ ≤ µmax

Then it can be shown that the best result which can be achieved by a deterministic
protocol will ensure that Pi’s clock is synchronised to within (µmax−µmin)/2 of the
server’s clock. This optimum is achieved by using the simple rule:

Deterministic synchronisation: On receiving a message with timestamp Ts from
the server, a process Pi will set its own clock to Ts +(µmax + µmin)/2.

Cristian [26] has shown that a better result can be achieved by a probabilistic
algorithm, on the assumption that message delay is a stochastic variable distributed

3 ρ-boundedness is by some authors defined by:

(1+ρ)−1 ≤ (Ci(t2)−Ci(t1))/(t2− t1)≤ (1+ρ)

The two formulations are equivalent in the limit (t2− t1)→ 0

5.5 Clock Synchronisation 145

µmin

Delay, µ

µmax

dF(µ)/dµ
Probability density

Fig. 5.15 Probability density for message delay between two given systems in a distributed system
(after [26])

according to a function F : [µmin; µmax]→ [0;1], where F(µ) gives the probability
that a given message will arrive within a time µ , corresponding to the probability
density function shown in Figure 5.15. The protocol consists in carrying out one or
more trials, each of which follows the rule:

Probabilistic synchronisation: The client, Pi, sends a message to the server and
awaits a reply.
If the reply arrives timestamped Ts by the server after an interval I, the client sets
its own clock to Ts + I/2.

It is easy to show that the client’s clock is then correct to within (I− 2µmin)/2. If
better accuracy is required, the procedure is repeated until a sufficiently small value
of I is obtained. The expected number of trials to achieve synchronisation to within
δ is 1/F2(µmin +δ). Interestingly, this protocol only requires knowledge of a lower
bound for the message delay, µmin. Note also that it is not necessary to know the
detailed form of F unless an estimate of the number of trials is required. Cristian’s
algorithm is one of the central elements in the Internet NTP clock synchronisation
protocol [92,93], where it forms the basis of the minimum filter used to find the best
estimate of delay and offset from a set of measurements made between a client and
a clock server.

Both the deterministic and the probabilistic algorithm assume that somewhere in
the network there are one or more (relatively) reliable and accurate time servers.
An approach for synchronising physical real time clocks without using a server has
been proposed by Lamport [75], who showed that δ -synchronisation can be attained
if the clocks follow the implementation rules:

IRP1: If process Pi does not receive a message at physical time t, then Ci is
differentiable at t and dCi(t)/dt > 0.

IRP2: Timestamp each message sent by Pi with the current value of Ci(t).

146 5 Multi-peer Consensus

Fig. 5.16 Lamport’s setup for
synchronising physical clocks

Pj

Pi

At least one message in
every interval [t, t+]τ

On receipt of a message with timestamp TM by Pj at time t ′, set Cj to
max(Cj(t ′ −0),TM + µmin).

Since this approach relies on the systems all communicating with one another rather
than with a single fixed server, it is reasonable to ask how long it will take for all the
clocks to be synchronised. Lamport shows that under the assumptions:

1. at least one message passes between two neighbouring systems in every period τ
(for τ � µmax), as illustrated in Figure 5.16.

2. the diameter of the network (i.e. the number of edges in the graph between the
two most distant systems) is d.

Then δ -synchronisation will be achieved for δ ≈ d · (2ρτ +(µmax− µmin)) after a
time no larger than τ ·d.

5.5.3 Byzantine Clock Synchronisation

If any of the clocks are subject to arbitrary faults, Byzantine techniques are needed
to ensure synchronisation. There are two approaches in common use:

Interactive convergence, where correctly working clocks exchange messages
which cause their settings to converge.

Interactive consistency, where correctly working processes obtain a mutually
consistent view of the time shown on the other processes’ clocks, as in the Byzan-
tine Generals algorithms discussed in Section 5.4.

A typical example of the interactive convergence approach is the algorithm CNV
given by Lamport and Melliar-Smith [78, 79]. This assumes that all correctly work-
ing clocks are δ -synchronised initially, and that all processes read the clocks of all
other processes. The principle is that each process Pi sets its own clock Ci to a fault-
tolerant average of the values read, formed by taking the average after replacing all
deviant values – those which deviate more than δ from Ci(t) – by Ci(t). The close-
ness with which the clocks can be synchronised (i.e. the minimum achievable value
of δ) depends on how far apart they are allowed to drift before (re-)synchronisation.

In practice, it is not feasible directly to use the average times reported by the
other processes, since the other clocks cannot all be read at exactly the same instant,
and the messages reporting the times on the other clocks take a finite time to arrive.
Instead, Ci(t) is updated by the average difference between the time reported by each

5.5 Clock Synchronisation 147

Protocol 19

P[i : NS,T : Z] def=(P1[i,T] ‖ Timer[i])\up[i]

P1[i : NS,T : Z] def=(SAPA?s : {SIGNAL}→ up!SET →
∐

j∈NS−{i} right[j]!s→
P2[i, [0,0, . . . ,0],T]

[]le f t[k ∈ NS]?s : {SIGNAL}→ right[k]!(i,T)→ P1[i,T])
P2[i : NS, ts : Z

∗,T : Z]
def=(le f t[k ∈ NS]?(j : NS, t : Z)→

(if |t−T |> δ + ε
then P2[i, ts † [j �→ 0],T]
else P2[i, ts † [j �→ t−T],T])

[]le f t[k ∈ NS]?s : {SIGNAL}→ right[k]!(i,T)→ P2[i, ts,T]
[]tick→ P2[i, ts,T +d]
[]up[i]?t : {TIMEOUT}→ P1[i,T +average(ts)])

Timer[i : NS] def=(up[i]?s : {SET}→ (up[i]?r : {RESET}→ Timer[i]
[]up[i]!TIMEOUT→ Timer[i]))

Fig. 5.17 Interactive Convergence protocol for clock synchronisation.

of the other clocks and the value of Ci at the time when this report arrives; in the
average, the difference for clock, say Ck, is considered deviant (and is replaced by
0) if it exceeds δ +ε , where ε is the accuracy with which a process can measure the
difference between its own clock value and that of another process.

The detailed protocol – and the value of ε – depends on the mechanism used to
read the clocks in the other processes. An example is shown in Figure 5.17: here
synchronisation of the clocks is initiated by a user sending a SIGNAL via channel
SAPA. This causes all the processes to be asked to send the settings on their clocks.
The replies are converted to time differences, filtered to remove deviant values, and
collected up in the sequence ts until a timer runs out, at which time their average is
used to update the local timer. The event tick indicates some internal event which
advances the local timer. A SIGNAL message arriving from another process likewise
causes the local process to reply with the current value of its timer.

Like the Byzantine Generals algorithms with oral messages, this protocol re-
quires there to be n > 3m processes in total, if it is to work correctly when up
to m of them are faulty. If this condition is fulfilled, and the clocks are initially
δ -synchronised, then Lamport and Melliar-Smith demonstrate that the clocks will
continue to be δ -synchronised after adjustment, provided δ is at least:

(6m+2)ε +(3m+1)ρR

where R is the interval between successive (re-)synchronisations.
In contrast to interactive convergence protocols, the aim of interactive consis-

tency protocols is to cause correctly working processes to get a mutually consistent
view of the time shown on the other processes’ clocks. This is analogous to the

148 5 Multi-peer Consensus

aim of the Byzantine Generals algorithms discussed in Section 5.4. For clocks, we
require the following two conditions to be fulfilled:

IC1: All non-faulty processes Pi, Pj agree on the same value for the clock in a
third process, Pk (even if this process or its clock is faulty).

IC2: If process Pi is non-faulty, then all other non-faulty processes obtain the
clock value that it sends.

Typical examples of this approach are Lamport and Melliar-Smith’s algorithms
COM and CSM, which are completely analogous to the Byzantine Generals pro-
tocols Protocol 17, using oral messages, and Protocol 18, using signed messages,
respectively. These protocols can maintain δ -synchronisation provided δ is respec-
tively at least (6m+4)ε +ρR and at least (m+6)ε +ρR.

5.6 Finding the Global State

As our final example of protocols for reaching consensus, we shall consider how to
find the global state of a distributed system in which data items can move from one
part of the system to another. There are innumerable uses for this. For example:

• Finding the total number of files in a distributed file system, where files may be
moved from one file server to another;

• Finding the total space occupied by files in such a distributed file system;
• Finding the number of control tokens whose possession gives the right to perform

certain actions in the system (see Section 4.4.3).

and so on. Obviously this can be done in a trivial way if we are allowed to have a
pause in the operation of the system. We just stop the system (say, at some agreed
instant of time), wait until any messages which are in transit have arrived, take a
“snapshot” of the state of each of the processes, and then set the system going again.
However, this is not usually a very convenient way to run a distributed system, and
we would prefer a method which allows the system to continue operating at the
same time as we find its global state.

A way to solve this problem has been described by Chandy and Lamport [22],
and is usually known as the distributed snapshot algorithm. To understand the algo-
rithm, you need to realise that the state of the system is composed of the states of
the participating processes together with the states of the channels through which
data (i.e. the files, tokens or whatever) pass when being transferred between these
processes. The algorithm relies on two assumptions:

1. The communication channels are error-free and sequence preserving.
2. A channel delivers a transmitted message after an unknown but finite delay.

The only events in the system which can give rise to changes in the state are com-
munication events. Each event is described by 5 components:

5.6 Finding the Global State 149

e ∼< P,s,s′, M,c >
Process P goes from state s to
state s′

Message M is sent or re-
ceived on channel c.

An event e =< P,s,s′,M,c > is only possible in global state S if:

1. P’s state in S is just exactly s.
2. If c is directed towards P, then c’s state in S must be a sequence of messages with

M at its head.

Note that this implies that simultaneous events are assumed not to occur, i.e. there is
a total ordering of events. If e takes place in global state S, then the following global
state is next(S,e), where:

1. P’s state in next(S,e) is s′.
2. If c is directed towards P, then c’s state in next(S,e) is c’s state in S, with M

removed from the head of the message seqeuence.
3. If c is directed away from P, then c’s state in next(S,e) is c’s state in S, with M

added to the tail of the message sequence.

A possible computation of the system is a sequence of possible events, starting from
the initial global state of the system. An simple example of the progress of a possible
computation is shown in Figure 5.18. In the figure, and subsequently in this section,
ci j denotes the channel which can carry messages from process Pi to process Pj.

System configuration:

1p 2p 3pc12 c23

c32c21

Event Global state S after event
< P s s′ M c >⇒< P1 P2 P3 c12 c21 c23 c32 >

<100 125 10 <> <> <> <>>
e1 <P1 100 25 75 c12>⇒< 25 125 10 〈75〉 <> <> <>>
e2 <P2 125 100 25 c23>⇒< 25 100 10 〈75〉 <> 〈25〉 <>>
e3 <P2 100 175 75 c12>⇒< 25 175 10 <> <> 〈25〉 <>>
e4 <P2 175 125 50 c21>⇒< 25 125 10 <> 〈50〉 〈25〉 <>>
e5 <P3 10 35 25 c23>⇒< 25 125 35 <> 〈50〉 <> <>>
e6 <P1 25 75 50 c21>⇒< 75 125 35 <> <> <> <>>

Fig. 5.18 A possible computation

Can we now find rules for when to take snapshots of the individual processes and
channels so as to build up a consistent picture of the global state? To answer this
question it is necessary to return to the happened before relation,→, defined in Sec-
tion 5.5. If for two events e1,e2, it is the case that e1→e2, then e1 happened before

150 5 Multi-peer Consensus

e2 and could have caused it. A consistent picture of the global state is obtained if we
include in our computation a set of possible events, H , such that:

ei ∈H ∧ e j→ei ⇒ e j ∈H

If ei were in H , but e j were not, then the set of events would include the effect of an
event (for example, the receipt of a file), but not the event causing it (the sending of
the file), and an inconsistent picture would arise. The consistent global state found
in this way is:

GS(H) = The state of each process Pi after Pi’s last event in H
+ for each channel, the sequence of messages sent in H but not re-

ceived in H .

Some examples of consistent sets of events in the case of the computation of Fig-
ure 5.18 are shown in Figure 5.19(b) and (c), while an inconsistent set of events is
shown in Figure 5.19(d).

Chandy and Lamport’s protocol for finding a consistent set of events H makes
use of markers, which are inserted in the stream of ordinary messages associated
with the application. Process Pi follows the two rules:

Send markers:
Note Pi’s state.
Before sending any more messages from Pi, send a marker on each channel ci j
directed away from Pi.

Receive marker: On arrival of a marker via channel c ji:
If Pi has not noted its state
Then Send markers.

Note c ji’s state as empty.
Else Note c ji’s state as the sequence of messages received on c ji since

Pi last noted its state.

The algorithm can be initiated by any process. To start the algorithm, it is only
necessary to follow the Send markers rule. If, for example, the progress of the
basic computation is as in Figure 5.19, and P2 initiates the algorithm at m1 sometime
between event e2 and e3, then the algorithm could proceed as shown in Figure 5.20.
You should notice the wording here: the markers might move faster or slower along
particular channels, and so arrive at their destinations earlier or later than shown in
the figure. The only thing we know for certain about the progress of the markers is
that they cannot overtake messages (or other markers) sent previously on the same
channel, since we assume that the channels are sequence-preserving.

The various components of the state are noted down in accordance with the al-
gorithm as follows:

5.6 Finding the Global State 151

e1

e6

e2

e3

e4

e5

P1 P2 P3

Time

100

100

35

125 10

25

50

7525

175

125

75

(a)

e1

e6

e2

e3

e4

e5

P1 P2 P3

Time

100

35

125 10

25

50

7525

175

125

75

100

H

(b)

e1

e6

e2

e3

e4

e5

P1 P2 P3

Time

100

35

125 10

50

7525

125

75

100

175 25

H

(c) P1 P2 P3

e1

e6

e2

e3

e4

e5

Time

100

35

125 10

7525

125

75

100

175 25

50

H

(d)

Fig. 5.19 Consistent and inconsistent sets of events. The heavy dotted curve demarcates set H .
(a) Basic computation.
(b) A consistent set. H contains {e1,e2,e5}.
(c) A consistent set. H contains {e1,e2,e3}.
(d) An inconsistent set. H contains {e1,e2,e3,e6}, but not e4, where e4→e6.

Marker event Processes Channels
m1 P2 = 100
m2 P1 = 25 c21 = 〈〉
m3 c12 = 〈75〉
m4 P3 = 35 c23 = 〈〉
m5 c32 = 〈〉

In a practical implementation, it would of course not be quite enough just to
note these component values down locally in whichever of the processes they were
observed in – they would also have to be sent to the process which started the al-
gorithm. The overall result here is a total state of 235 units of whatever it is we are

152 5 Multi-peer Consensus

P1 P2 P3

e1

e6

e2

e3

e4

e5

m2

m1

m3

m4

m5

25

50

25

175

125

75

100 125 10

100
75

35

Fig. 5.20 Chandy and Lamport’s Distributed Snapshots algorithm.
The algorithm has here been started by process P2. The heavy dashed curves show the progress of
the markers.

trying to count up, which is certainly what we would hope for, since the initial state
also contained 235 units!

Interestingly, however, there was no single instant of time at which the processes
and channels actually contained the values noted down. To see how this can come
about, remember that all that was promised was that the algorithm would note down
the state after a consistent set, H , of events. In fact what has been noted here is the
values corresponding to the set H in Figure 5.19(b). If the algorithm was initiated
by another process, or if the markers moved faster or slower, we would effectively
delineate another (consistent) set H and in all probability note down another set of
state components.

The key to understanding why this works is to notice that our consistent picture
is based on a partial ordering → of events in the system. So for example in the
computation of Figure 5.19(a), we know that e2→e5 and e2→e3. But we have no
knowledge about the timing relationships of e3 and e5. With respect to the ordering
relation→, these two events are incomparable. Without fixing a total ordering (say
by using a physical clock), we cannot determine what the true sequence of these
events is. Passing markers round enables us to delineate a consistent set of events
H in the sense of the partial ordering. But when we note down a process’ state, we
are unable to know whether the events which we have already seen in this process
lay before or after incomparable events in other processes. We can in fact accept
any total ordering which does not conflict with the partial ordering. We can divide
events in the system into two classes:

Further Reading 153

Pre-recording events: Events in a computation which take place before the
process in which they occur notes its own state.

Post-recording events: All other events.

Chandy and Lamport’s algorithm finds a global state which corresponds to a per-
mutation of the actual order of the events, such that all pre-recording events come
before all post-recording events. The global state which is noted down is the one
which would be found after all the pre-recording events and before all the post-
recording events. So for example, for the computation of Figure 5.19(a), the true
sequence of events is:

seq = 〈e1,e2,e3,e4,e5,e6〉

When the markers are passed round as shown in Figure 5.20, then e1, e2 and e5 are
pre-recording events, and the state which is noted down, S∗, is the state after these
events in the permutated sequence:

seq′ = 〈e1,e2,e5,e3,e4,e6〉

Although S∗ does not necessarily correspond to any state which actually occurred at
a particular instant of time, it is a state which could possibly have occurred, in the
sense that:

• It is possible to reach S∗ via a sequence of possible events starting from the initial
state of the system, Sι (in the example above, the sequence 〈e1,e2,e5〉).

• It is possible to reach the final state of the system, Sφ , via a sequence of possible
events starting from S∗ (in the example, the sequence 〈e3,e4,e6〉).

You should check for yourself that these sequences of events really are possible,
starting from the given states.

Further reading

In addition to the large number of papers on specific topics referenced in the text,
a number of useful review articles are available and make a good place to start
further reading. Fischer [44] gives a good survey of results on Byzantine consensus.
Lynch [84] presents “A Hundred Impossibility Proofs for Distributed Computing”,
of which a substantial number are within the area treated in this chapter. Finally, for
those interested in not just the properties of these protocols but how to prove them,
the article by Fischer, Lynch and Merritt [45] gives a fascinating insight into the
type of mathematical methods required.

A very large number of situations can be dealt with in terms of finding the global
state of a system. Chandy and Lamport’s distributed snapshot algorithm is an ex-
ample of a very general algorithm for this purpose. Several more specialised pro-
tocols have been developed for use for more specific purposes, such as detecting

154 5 Multi-peer Consensus

when a distributed computation terminates [33, 48] and detecting distributed dead-
lock [23, 52, 88].

Exercises

5.1. Explain how Protocol 14 would have to be modified if the size of the send
window for the broadcast were to be larger than 1, i.e. if it were possible to start a
broadcast with sequence number (n + 1) before the broadcast with number n were
complete.

5.2. Give a CSP process description of Skeen’s centralised, non-blocking (3-phase)
commit algorithm, as sketched in the text (and described more fully in [117]).

5.3. Explain carefully what the flow of messages is in the system, if the Byzantine
Generals algorithm given as Protocol 17 is executed for n = 4, t = 1, when the
initial commander is disloyal. Then try the case n = 7, t = 2, with lieutenants 2 and
3 disloyal. How many messages are sent in total in each of these two cases? Check
your result against the formula in the text.

5.4. Give a CSP description of Dolev and Strong’s modification of Protocol 18 for
Byzantine agreement using signed messages, as sketched in the text and described
more fully in [36].

5.5. Suppose Chandy and Lamport’s distributed snapshot algorithm is initiated by
process P1 just after event e1 in the computation of Figure 5.19(a). Sketch how
markers would be exchanged during the execution of the algorithm in this case.
Which events are included in the set H during this execution of the algorithm?
Which state components are noted down in the various processes, as execution of
the algorithm proceeds? Which global state S∗ is discovered by the algorithm in this
case?

Chapter 6
Security

“And when the loss has been disclosed, the Secret Service say:
‘It must have been Macavity!’ – but he’s a mile away.
You’ll be sure to find him resting, or a-licking of his thumbs,
Or engaged in doing complicated long division sums”.

“Macavity: The Mystery Cat”
T. S. Eliot.

In distributed systems, security is well-known to be an important issue, as the con-
tinual stream of computer scandals, in which ‘hackers’ break into supposedly secure
computer installations, testifies. The first step on the way to obtaining a really secure
system is to recognise that there are two basic problems in a distributed system:

1. It is difficult, perhaps even impossible, to protect the physical connections in
the distributed system completely against tapping. This means that you should
assume that all messages can in principle be overheard, recorded for replaying
on a later occasion, or altered.

2. It is difficult to be certain that the party with whom you are exchanging messages
really is the party that you believe him to be, since you cannot really ‘see’ who
it is, but have to rely on more indirect methods of identification, which might be
faked.

Naive protocols for ensuring security blatantly ignore one or both of these problems.
Unfortunately, methods which appear to deal with the problems are often equally
faulty. As we shall see, a formalised mechanism for reasoning about such methods
is required in order to achieve the aim of a secure system.

6.1 Cryptographic Methods

Mechanisms for supporting a secure service are in general based on the use of cryp-
tographic methods. These are methods for transforming data in order to hide their
information content, prevent their undetected modification or prevent their unautho-
rised use. Generally speaking, the process of transforming data to a form where their

155

156 6 Security

information content is hidden – often known as ciphertext – is known as encryption,
the reverse process – transforming to plaintext – is known as decryption, and a given
mutual pair of encryption and decryption methods are said to form a cryptosystem.

Cryptographic methods are generally assumed to be able to offer at least confi-
dentiality of data to their users. However, this will in fact only genuinely be the case
if:

1. Encryption is perfect, in the sense that encrypted data can only be decrypted if
you possess details of the authorised decryption method. This implies that the
decryption method is unique, and that no combination of encrypted messages,
with or without knowledge of the corresponding plaintext messages, will ‘leak’
sufficient information to enable the decryption method to be deduced.

2. Decryption is sensible, in the sense that if you decrypt an encrypted message
using the wrong decryption method, then you get something which is plainly
recognisable as nonsense. This implies that the users have some idea of what sort
of messages they expect.

In general, neither of these assumptions is satisfied. However, they are often satis-
fied ‘for all practical purposes’. For instance, a potential enemy will always need a
certain amount of time to discover the required decryption method. If the encryption
method is changed frequently enough, the enemy will (unless an accident which re-
veals the method occurs, or there is a spy who deliberately reveals it) in practice
never be able to find the right method in time.

6.1.1 Encipherment

The most basic form of encryption is encipherment, in which an encipherment func-
tion,

E : M ∗ ×K →M ∗

is used to transform plaintext (say, m ∈M ∗) to ciphertext using a key (say, k ∈K),
known as the encipherment key. A complementary decipherment function, D, trans-
forms the ciphertext back to plaintext using the same or a different key, the deci-
pherment key. Cryptosystems using encipherment fall into two classes:

Symmetric systems, in which knowledge of the encipherment key implies knowl-
edge of the decipherment key and vice-versa. An example is when the two keys
are identical. Obviously this is only secure if the keys themselves are kept secret.
Symmetric systems are therefore often known as secret key cryptosystems.

Asymmetric systems, in which knowledge of the encipherment key does not im-
ply knowledge of the decipherment key or vice-versa. These are often known as
public key cryptosystems (PKCS). A common arrangement is for one of the keys
in fact to be made public, whereas the other one (the private key) is kept secret
by the user.

6.1 Cryptographic Methods 157

6.1.2 Secret Key Cryptosystems

Secret key cryptosystems include most of the classic tools of the cryptographer’s
trade, such as substitution ciphers and transposition ciphers. In a substitution cipher,
each symbol (letter, digit etc.) of the plaintext is encrypted by replacing it with
another symbol from the same (or different) symbol set. Trivial examples are to use
as a key a cyclic permutation of the letters of the alphabet, say RSTU . . .Q, so that
the encryption function becomes:

{A �→ R,B �→ S,C �→ T,D �→U, . . .Z �→ Q}

or to use an arbitrary permutation of the letters of the alphabet, say REV B . . .Y , so
that the encryption function becomes:

{A �→ R,B �→ E,C �→V,D �→ B, . . .Z �→ Y}

More complex examples include the use of one-time pads and the like. These are
essentially random number generators, so that the substitution varies continuously
and unpredictably throughout the text (or texts) to be sent, corresponding to a sub-
stitution with an infinitely long, non-repeating key. In a transposition cipher, the
symbols of the message are left unchanged, but their positions in the message are
altered.

Of these simple ciphers, only substitutions using one-time pads offer substantial
protection against analysis. This is because the high redundancy of natural language
permits various forms of statistical analysis of the text, such as determining the
frequency of individual letters, or of sequences of two or more letters. If particular
combinations of plaintext and the corresponding ciphertext are known1, or if there
is enough ciphertext without corresponding plaintext available, this type of analysis
can be used to reveal the nature of the cipher.

As long ago as 1949, Shannon [114] pointed out that there are two basic tech-
niques for counteracting this form of analysis:

Diffusion, which is the dissipation of redundancy in the plaintext by spreading it
out over the ciphertext. Transposition ciphers achieve this aim in a simple way,
since they typically break up sequences of letters. Encryption functions which
generate symbol i of the ciphertext from several symbols (say i−n, i−n+1, ..., i)
of the plaintext also enjoy this property.

Confusion, which is introduction of as much complexity into the encryption func-
tion as possible, so that it becomes difficult to deduce the key by analysis of
ciphertext. This is the idea behind the more complex substitution ciphers.

Generally speaking, neither diffusion nor confusion gives much protection on its
own, but a combination of the two techniques can give a relatively high degree of
security.

1 This does not necessarily mean that the cipher has been ‘broken’. It may be possible simply to
get the system to tell you the encryption of a piece of plaintext which you yourself have provided.

158 6 Security

The best known modern secret key cryptosystem is the Data Encryption Stan-
dard (DES), introduced in 1977 by the USA National Bureau of Standards [256].
This uses a 56 bit key to encrypt blocks of 64 bits of data. The 56 bit key is used to
create 16 48-bit partial keys, which are used to perform 16 rounds of transformation
on each block of plaintext. Each round incorporates both confusion and diffusion,
by operating on the two halves of the 64 bit block in a manner described by a Feistel
network.

ki

Li Ri

Li+1 Ri+1

SP

Fig. 6.1 A round in a Feistel net-
work

Suppose in round i the two halves are Li and Ri re-
spectively. Then in a Feistel network the output of
the round is Li+1 and Ri+1, evaluated as follows:

Li+1 = Ri

Ri+1 = Li⊕SP(ki,Ri)

where ki is the i’th partial key,⊕ is the Exclusive OR
function, and SP is some combination of bit substi-
tutions and permutations, parameterised by the par-
tial key. Feistel networks are used in many secret key
cryptosystems, and have the useful property that they
are reversible, so that the same algorithm can be used
for encryption and decryption, where for decryption the steps are performed in the
reverse order. The detailed properties of the cryptosystem depend on the number
of rounds and on the particular SP-function chosen for use. A more detailed de-
scription of DES’s SP-function can be found in [113]. In DES, the 16 rounds of
transformation are preceded by a key-independent initial transposition of the 64 bit
plaintext block, and are followed by an exchange of the two halves of the (trans-
formed) block and then by the inverse of the initial transposition, making 19 stages
of transformation in total.

This may all sound very complicated, but essentially the DES cryptosystem is a
monoalphabetic substitution cipher, where each symbol in the alphabet is of 64 bits.
On the other hand, it has a simple hardware implementation, which in current VLSI
technology permits encryption and decryption speeds of up to at least 1 Gbit/s from
commercially available chips and even higher speeds from laboratory prototypes.
Its disadvantage, in common with other secret key cryptosystems, is that each pair
of users must share a different key. So in systems with N users it becomes necessary
to distribute O(N2) keys. Moreover, the key size for DES is by now much too small
for high security applications. A determined enemy could find the key within a few
hours by exhaustive search using a cluster of powerful computers. Multiple encryp-
tion, using several independent keys, is therefore recommended for more sensitive
applications [90].

Double encryption, for example according to the scheme:

e = DES(k2,DES(k1,d))
d = DES−1(k1,DES−1(k2,e))

is the simplest and most obvious choice. Unfortunately, it is susceptible to meet-in-
the-middle attacks, based on knowledge of the ciphertext which corresponds to two

6.1 Cryptographic Methods 159

(b) m1 m2 m3 m4 m5

m1 m2 m3 m4 m5

c2 c3 c4 c5c1

E E E E E

c1c0

E E E E E

c2 c3 c4 c5

(a)

Fig. 6.2 DES modes of operation: (a) ECB mode and (b) CBC mode.
Here, E is the encryption function, and ⊕ the exclusive or function.

or more known blocks of plaintext: Given a (plaintext,ciphertext) pair (d1,e1), the
attacker computes a table of DES(k,d1) for all possible k ∈K and then computes
values of x = DES−1(k′,e1) for successive values of k′ ∈ K . If x equals one of
the values in the table, say for k = p and k′ = q, then p and q are good candidates
for the two keys k1 and k2 of the double encryption. This is checked by seeing
whether DES(p,di) = DES−1(q,ei) for one or more further (plaintext,ciphertext)
pairs (di,ei). If not, then the search continues with further values of k′.

Triple encryption, on the other hand, is relatively resistent to attack. A popu-
lar choice is the so-called Triple DES (or 3DES) scheme, which uses three keys
(k1,k2,k3), so that:

e = DES(k3,DES−1(k2,DES(k1,d)))
d = DES−1(k1,DES(k2,DES−1(k3,e)))

If the three keys are all different and of size n bits, this scheme has roughly the same
resistance to attack as (single) DES with a key of 2n bits. Simplified schemes in
which k1 = k3 have also been proposed, but are in fact also susceptible to meet-in-
the-middle attacks [90].

Finally, DES has another problem which it shares with all other cryptosystems
which operate on fixed-length blocks of data (including 3DES and the more modern
AES to be described below). This is that the most obvious way of encrypting the
plaintext, where each block of plaintext is directly encrypted using the same secret
key, will always produce the same block of ciphertext from a given block of plain-
text. This may help an attacker to deduce the secret key. This simple approach is
known as the Electronic Codebook (ECB) Mode of operation for a block cipher, and
is illustrated in Figure 6.2(a). Generally speaking, ECB mode encryption is only
useful when single blocks of non-repetitive text, such as encryption keys, have to
be transmitted. For longer or more repetitive transmissions, it is considered unsafe.
Several other modes of operation have, however, been designed to provide more
security in such cases, and are described in [257]. For general-purpose block trans-
mission of data, the Cipher Block Chaining (CBC) mode illustrated in Figure 6.2(b)
is usually recommended. In CBC mode, the ciphertext for block i is computed as:

160 6 Security

ci = DES(mi⊕ ci−1, k)

where k is the secret key, mi is the plaintext for block i, ci−1 is the ciphertext for
block i−1, and ⊕ is the exclusive or function. The first block is encrypted using an
initial block c0, which may be thought of as a supplement to the key. This approach
ensures that a series of blocks with identical plaintext will in general give different
ciphertexts.

Recognising the weaknesses of the commonly used DES algorithm, the USA Na-
tional Institute of Standards and Technology (NIST) in 2001 approved a more secure
symmetric cryptosystem, known as the Advanced Encryption Standard (AES) [259].
This is based on the Rijndael algorithm [27], which was the winner of a competi-
tion organised by NIST for an improved encryption algorithm for protecting non-
classified data. Rijndael is an iterated block cipher with a variable block size and
key size, either or both of which can be chosen to be 128, 192 or 256 bits. AES is
slightly more restrictive, as the block size can only be 128 bits.

As in DES, encryption in AES proceeds in several rounds, where each round
makes use of a specific round key derived from the main encryption key. Unlike
DES, however, each round of transformation is not based on a Feistel network, but
uses three distinct invertible uniform transformations, known as layers:

1. The linear mixing layer, which guarantees high diffusion over multiple rounds.
2. The non-linear layer, which uses parallel application of non-linear byte substitu-

tions to each of the bytes of the block independently.
3. The key addition layer, which performs an Exclusive-OR of the current round

key with the block produced by the previous transformations.

The number of rounds in AES depends on the key size, being 10 for key size 128
bits, 12 for key size 192 bits and 14 for key size 256 bits. The Rijndael algorithm
was exposed to extensive cryptanalysis during the competition for selection as the
AES, and is widely accepted to be an efficiently implementable algorithm which is
resistant to all currently known types of attack. Encryption and decryption speeds
in excess of 2 Gbit/s, using carefully designed hardware, have been reported. Of
course, AES still suffers from the general weakness of all block ciphers which we
discussed above, but use of more advanced modes of operation such as CBC allevi-
ate this problem as in the case of DES.

6.1.3 Public Key Cryptosystems

In recent years, most attention has been paid to public key systems. Their working
is illustrated in Figure 6.3. User A, traditionally known as Alice, has public key PKA
and private key SKA, while user B, traditrionally known as Bob, uses public key PKB
and private key SKB. By definition, Alice knows PKB (but not SKB) and Bob knows
PKA (but not SKA). When Alice wishes to send secret data d to Bob, she enciphers
them using Bob’s public key, and therefore sends enciphered data

6.1 Cryptographic Methods 161

Be = E(d,PKB)

A)d’ = D(e’,SK

B
)

A
e’ = E(d’,PKA)

d = D(e,SK

Fig. 6.3 Operation of a public key cryptosystem.

e = E(d,PKB)

Bob can now decipher these data using his private key, to obtain

D(e,SKB) = D(E(d,PKB),SKB) = d

Similarly, Alice can decipher secret data which Bob has enciphered using PKA.
For this to offer true security, it must not be possible from publicly available

information to evaluate the inverse function to E. Thus E must be a so-called trap-
door one-way function, where the ‘trapdoor’ refers to the existence of the decryption
function D, for those who know the appropriate private key.

A well-known public key system is the so-called RSA system, after its inventors
Rivest, Shamir and Adelman [110]. The basic security in RSA relies on the compu-
tational difficulty of factorising a large integer into prime factors. Given a publicly
known integer, n, known as the arithmetic modulus, each user employs two other
integers, p, the Public Exponent (which can be made public), and s, the Secret Ex-
ponent (which is kept secret), to encipher and decipher data. Data to be sent are
divided into blocks, where each block is treated as the binary representation of a
natural number, whose value must not exceed n. Typically, the blocks are chosen to
be of l bits, where l is the largest integer for which 2l ≤ n. To achieve confidentiality,
encipherment and decipherment use the functions:

e = dp (mod n)
d = es (mod n)

respectively. Such functions, of the form xy (mod n), are known as modular expo-
nentiation functions. Efficient algorithms are known for evaluating these; for exam-
ple the recursive function:

modexp : N0×N0×N0 → N0

modexp(x,y,n) def=
if y = 0
then 1
elseif even(y)
then (modexp(x,y/2,n))2 mod n
else (x ·modexp(x,y−1,n)) mod n

For an l-bit exponent y, this requires between l and 2l multiplications modulo n.

162 6 Security

The inverse function to the modular exponentiation dp mod n is evaluation of
the integer p’th root modulo n. Rather curiously, although algorithms for this are
known, there is no known way of constructing them if we only know p and n – we
also have to know the prime factors of n. If we do not know these prime factors,
then we have to know s, the secret exponent, in order to decrypt the message. Thus
the encryption function does indeed appear to be a trapdoor one-way function as
required.

For the RSA algorithm, n is therefore chosen to be the product of two large
primes, say q · r, and p is chosen randomly such that:

gcd(p,(q−1) · (r−1)) = 1

i.e. such that p is relatively prime to (q−1) · (r−1). Then s is evaluated by Euclid’s
extended algorithm so that it satisfies:

p · s = 1 (mod (q−1) · (r−1))

To understand why this is necessary, you need to know some simple results from
number theory: The set of the whole numbers modulo n, {i ∈ N|0 ≤ i < n}, of-
ten known as the set of residues mod n and denoted Zn, form a commutative ring
with operations addition and multiplication modulo n. A residue a ∈ Zn is said to
be invertible if there is an element, usually denoted a−1 ∈ Zn and known as the
multiplicative inverse of a, such that:

a ·a−1 ≡ a−1 ·a≡ 1 (mod n)

For example, in Z5, 2−1 = 3, since 2 · 3 mod 5 = 1. A residue a ∈ Zn is in fact
invertible if and only if a and n are relatively prime, i.e. iff gcd(a,n) = 1. The set
of invertible residues in Zn is often denoted Z

∗
n. For example, Z

∗
5 = {1,2,3,4}, and

Z
∗
6 = {1,5}.

If n itself is prime, then of course all non-zero elements of Zn are invertible; in
such a case, Zn is the finite field G F (n). The number of invertible residues mod n
for n > 0 is given by Euler’s totient function, φ(n), where by definition φ(1) = 1. If
n is prime, then φ(n) = n−1, as we see in the case of Z

∗
5 above; if n = q · r, where

q and r are both prime, then φ(n) = (q− 1) · (r− 1), as we see in the case of Z
∗
6.

Finally, Euler’s theorem tells us that:

gcd(a,n) = 1 ⇒ aφ(n) ≡ 1 (mod n)

while a (more general) corollary to Euler’s theorem gives, for primes q and r:

(n = q · r)∧ (0 < a < n) ⇒ ak·φ(n) ≡ 1 (mod n)

From these results it is easy to show that the original message is retrieved by
decrypting the encrypted message, since

6.1 Cryptographic Methods 163

es (mod n) = (dp (mod n))s (mod n)
= dp·s (mod n)
= dk·(q−1)·(r−1)+1 (mod n), for some k
= d ·dk·(q−1)·(r−1) (mod n)
= d ·1 (mod n), by corollary to Euler’s theorem
= d

Since the modulus n is publicly known, the encipherment would be compromised
if it were possible to resolve n into its factors q and r, since then (q− 1) · (r−
1) would be known, and anyone knowing p could determine s by using Euclid’s
extended algorithm. However, it is generally agreed to be exceedingly difficult to
resolve large integers, which are products of a few large prime factors, into their
prime factors2. In 1977, for example, Rivest, Shamir and Adelman challenged the
world to find the two factors of a number consisting of 129 decimal digits. This
problem was solved in 1994 by a large team of volunteers after about 5000 MIPS-
years of calculations, using the idle time on 1600 workstations over a period of about
8 months. For the best modern factorisation algorithm (the Number Field Sieve),
which has an asymptotic run time of e(1.923+O(1))(lnn)1/3(ln lnn)2/3

, it is estimated that
factorisation of a 1024 bit number requires about 3 ·107 MIPS-years of effort. So the
method is regarded as safe, provided the size of n’s representation, l, exceeds 1024
bits or so. The question of how to choose good values for n is discussed in [53].

Note the careful choice of wording here: it has never been formally proved that
modular exponentiation is a trapdoor one-way function, or even that trapdoor one-
way functions exist at all. On the other hand, nobody has ever been able to show that
it is not! So the security properties of the RSA cryptosystem are not mathematically
clear. An advantage of the method, as with all public key systems, is that each user
only needs a single key set (for RSA in fact three values: n, p and s) for all purposes.
The disadvantage is that it is computationally much more demanding to evaluate the
encryption and decryption functions than, say, DES or AES. The speed factor is
somewhere between 100 and 1000. Speeds of the order of 1 Mbit/s for a 512 bit
modulus are the best that have been achieved using specialised chips so far. For this
reason, RSA is rarely used for encrypting large quantities of data. One common use
for it is to encrypt SKCS secret keys for distribution to their owners. And we shall
see later that RSA (and PKCSs in general) have properties which can be exploited
in order to produce digital signatures and similar proofs of identity.

It is important to be aware that the basic security of the RSA algorithm can be
compromised by unsuitable choice of keys or by unsuitable distribution of keys with
the same modulus. For example, anyone who knows a set of keys, say for a particular
modulus n, can factorise n and thus break the cryptosystem for any other user who
is using that modulus. This is particularly easy if the public keys used with this
modulus are relatively prime (which they usually are). Suppose in this case that two
users have public keys p1 and p2 and both encrypt the same data, d. The attacker
can then pick up the two ciphertexts:

2 This must be why Macavity spends a lot of time doing complicated long division sums. . .

164 6 Security

e1 = dp1 mod n

e2 = dp2 mod n

If gcd(p1, p2) = 1, then Euclid’s extended algorithm can be used to find integers u
and v such that u · e1 + v · e2 = 1. Now one of u and v must be negative; let it be u.
Euclid’s extended algorithm can then be used once more to evaluate e−1

1 , and from
this the attacker can work out:

(e−1
1)−u · ev

2 = d mod n

thus discovering the plaintext without the trouble of factorising n.

6.2 Integrity

Making data unreadable by the use of encryption does not necessarily preserve their
integrity. The principal reason for this is that an intruder may be able to remove
blocks of encrypted data, change their order, or replace them with blocks from a
previous conversation (a so-called replay attack). Merely encrypting the data does
not prevent this. We also need mechanisms which can ensure that only up-to-date
data are accepted, and that their order is not interfered with.

Fig. 6.4 An intruder records an exchange of data in preparation for a replay attack

A large part of the problem here is one which we have already dealt with in Sec-
tion 4.3.3. Mechanisms for ensuring temporal integrity include the use of references
which uniquely identify the conversation and a numbering scheme which uniquely
identifies the blocks of data. The references may, as we have seen, also merely be
numbers. Or, if the distributed system can offer a universal clock, timestamps can
be used.

However, in the presence of intruders who may deliberately remove or modify
messages, it is not sufficient just to send the ‘real’ data and the reference, since an
intruder could then easily fake a message by just replacing the original data with his
own. To prevent this type of tampering, the message must also include some kind
of fingerprint, which is calculated from the genuine data. If the data are changed or
corrupted, the fingerprint no longer matches, and the receiver will be able to detect
the fake.

The standard technique for creating such a fingerprint is to use a one-way hash
function, also known as a message digest, cryptographic checksum or compression

6.2 Integrity 165

function. Like the more usual hash functions used in symbol tables and the like, a
one-way hash function:

H : M → V

transforms a message m∈M of arbitrary length to a fixed-length hash value v∈ V .
However, a one-way hash function is also expected to have the properties that:

1. It is (strongly) collision resistant: It is computationally infeasible to find two
different messages m1,m2 ∈M , such that H(m1) = H(m2).

2. It is non-invertible (or pre-image resistant): Given v ∈ V , it is computationally
infeasible to find a message m ∈M such that H(m) = v.

Both these aims are easier to achieve if the cardinality of V is large, so security
is improved if the algorithm produces large hash values. In particular, the effort
required to exploit collisions in order to compromise a hash function which produces
an n-bit hash value is O(2n/2).

Most modern one-way hash functions use more or less the same principles: The
message to be hashed is divided into blocks. Each block is processed in a number
of rounds, each of which consists of the successive application of a number of oper-
ations, each of which involves the application of a non-linear function and possibly
also a cyclic shift, to sub-blocks of the message. The output from each block is used
to determine a set of constants for use in processing the next block, until all blocks
in the message have been dealt with. Three of the most widely used hash functions
at present are:

MD5: This uses four rounds of 16 operations and produces a 128-bit hash
value [220]. Because of the relatively small hash value space, MD5 is no longer
considered secure.

Secure Hash Algorithm (SHA): This appears in four variants: SHA-1, using
four rounds of 20 operations and producing a 160-bit hash value, and SHA-256,
SHA-384 and SHA-512, giving 256, 384 and 512-bit values respectively [201,
260].

RIPEMD-160: This is an improved version of MD5 which uses two parallel sets
of five rounds of 16 operations and produces a 160-bit hash value [201]; 128- and
256-bit variants are also defined.

On its own, a one-way hash function is not enough to ensure integrity. An intruder
could simply substitute his own message, together with an appropriate reference
and hash value, for the genuine one. To prevent this, it is necessary to encrypt the
reference and hash value, for example so that the entire message then consists of the
‘real’ data, say d, the reference, say r, and the encrypted reference and hash value:

d̂r̂E(r̂H(d̂r),K)

where H(x) is the hash value for x. It is not then possible to replace a block with a
given reference with a block with another reference without knowing the encryption

166 6 Security

and decryption method and the key, here denoted K. If the references used in consec-
utive blocks are related to one another in some systematic manner, it is not possible
to remove data blocks from the stream of data without being detected either.

To ensure integrity in a transmission from A to B, the key K needs to be A’s secret
key, either shared with B if an SKCS is in use, or A’s private key if a PKCS is in
use. In the PKCS case, an intruder can of course decrypt the encrypted part of the
message (using A’s public key), but this does not provide any information which she
could not have worked out for herself by using the unencrypted part of the message
and the (well-known) hash function. If confidentiality of the message is required,
double encryption would be needed, for example using:

E(d̂r̂E(r̂H(d̂r),SKA),PKB)

in order for B to be sure that the message could only have been sent by A and read
by B.

An alternative technique which avoids the inner encryption is to use a Message
Authentication Code (MAC). This is a one-way hash function, say C, with a secret
key as additional parameter:

C : M ×K → V

so that for message m ∈M and key k ∈K , the hash value is C(m,k). Like H, C is
required to be collision resistant and non-invertible. When a MAC is used, it is nec-
essary to have the secret MAC key in order to check whether the hash value matches
the message, and so an intruder cannot construct a correct hash value for a fake mes-
sage. As before, message confidentiality can be ensured by an outer encryption, so
that the transmitted message for MAC key MKAB is:

E(d̂r̂C(d̂r,MKAB),PKB)

A well-known example of a MAC is the so-called MDx-MAC, defined in ISO
standard 9797-2 [186]. This is in fact a family of MACs, whose members are based
on different basic standard hash algorithms, such as RIPEMD-160, RIPEMD-128
and SHA-1. Given a MAC key k of length Lk bits, and a standard hash function H
which takes input blocks of length L1 bits, the key k is extended to k′ of length 128
bits by concatenating it with itself a sufficient number of times. k′ is then used to
generate three subkeys, k0, k1 and k2. Subkey k0 is then used to modify the initiali-
sation vector of the chosen hash algorithm, while k1 is used to modify the constants
in the non-linear functions used in each round of the algorithm. The message is first
hashed using the modified algorithm, H ′, and then a final round of the modified
algorithm is applied to the result, as follows:

h1 = H ′(m)
h2 = φ ′(k2̂(k2⊕A)̂(k2⊕B)̂(k2⊕C), h1)

6.3 Digital Signatures 167

where φ ′ is the modified round function,⊕ is the exclusive-or function, and A, B and
C are constants of the MAC algorithm which depend on the hash function chosen.
For a hash value of length Lh bits, the first Lh bits of h2 are used.

A related idea, which is particularly used with the DES cryptosystem, but which
can also be used in any other system in which the plaintext is divided into blocks
for encryption (including RSA, AES and many others), is to use the Cipher Block
Chaining (CBC) mode of operation to produce a single block of ciphertext which
incorporates information from the encryption of all the blocks of plaintext. Starting
with an initial block c0 (which may be thought of as a supplement to the key), con-
secutive blocks of plaintext are encrypted, using the appropriate encryption function
E with key k, so that the ciphertext for the i’th block is:

ci = E(mi⊕ ci−1, k)

where mi is the plaintext for block i, ci−1 is the ciphertext for block i−1, and ⊕ is
the exclusive or function. If the message consists of N blocks of plaintext, the N’th
block of ciphertext, cN , can simply be used as the MAC3; unless needed for other
reasons, the remaining blocks of ciphertext can be discarded. Block chaining is the
basis of the ISO standard ISO10118-2 [200] for data integrity and ISO9797-1 [185]
for message authentication.

Finally, one-way hash functions can themselves be used as MACs in conjunction
with a SKCS. For example, using a hash function H and a shared secret key SKAB,
the MAC for message m ∈M can be evaluated as H(SKAB̂m). On its own, this is
not very secure, since an attacker could add extra blocks to the message and get a
new valid MAC, but more complex functions, such as H(k1̂H(k2̂m)), where k1
and k2 are two (possibly identical) keys, are generally regarded as secure. This is
essentially the procedure followed in the HMAC algorithm described in ISO9797-
2 [186].

6.3 Digital Signatures

In general, encryption ensures that data are unreadable by persons not knowing the
relevant decryption method. It is thus the primary mechanism for providing confi-
dentiality in a service. With the widespread use of electronic documents, there is
also a need for mechanisms which make it possible to check whether a particular
party is the originator (or, in some cases, the receiver) of a document. The obvious
idea is to attach a digital signature to the document. By analogy with the traditional
rules for good old-fashioned paper documents, we require that:

3 ISO9797-1 also defines some more complex possibilities, involving a further encryption, decryp-
tion or truncation of cN

168 6 Security

Protocol 20

Message 1 A→ T : {d}SKAT
Message 2 T → B : {(d,A)}SKBT

Fig. 6.5 Secret key signature verification protocol.
Here, SKpq is a secret key for communication between p and q, and {m}k denotes the message m
encrypted with key k.

• A signature cannot be forged, i.e. created by anyone but its rightful owner.
• A signature cannot be detached from one document and moved to another doc-

ument.
• A document, once signed, cannot be modified.
• The signer of a document cannot later deny having signed it.

These requirements mean that the service which transfers the documents must of-
fer integrity and non-repudiation. Confidentiality is not essential to the concept of
a digital signature, but may obviously also be necessary if the document’s contents
have to be kept secret. The ‘documents’ themselves do not, of course, need to be or-
dinary text documents, such as letters or contracts; we have already seen that digital
signatures can be used in the implementation of Byzantine agreement algorithms,
as discussed in Section 5.4.

The basic technique for producing a non-repudiable digital signature is to enci-
pher some data with a key which is private to the ‘signer’. To show that any particu-
lar person is in fact the signer, it is then sufficient to demonstrate that only the person
possessing the signer’s key could have produced the signature. Such a demonstration
is known as verification or certification of the source of the message.

There are two styles of signature certification:

SKCS: Here a trusted party, T, known as an arbitrator, is used to certify the
source of a document sent from A to B. The protocol is shown in Figure 6.5. A
encrypts the document, d, with a secret key SKAT which A and T have in common
and sends it to T. T decrypts the message to retrieve d, appends a statement that
it came from A, re-encrypts it with a secret key SKBT which B and T have in
common, and passes the result on to B. For this method to fulfil the requirements
for a signature, it is obviously essential that T can be fully trusted and that neither
of the keys has been compromised.

PKCS: Digital signatures based on PKCSs use encryption with the sender’s pri-
vate key, SKA, to generate the signature and decryption with the sender’s public
key, PKA, to check the signature. Since everyone knows the sender’s public key,
no special arbitrator is needed to perform the check. For this method to fulfil the
requirements for a signature, it is essential that only PKA ‘matches’ SKA and that
none of the private keys SKi has been compromised. Note that encryption with
the sender’s public key does not ensure confidentiality of the message! The pur-
pose of the encryption here is solely to demonstrate that the sender possesses a
particular secret which only she knows about.

6.3 Digital Signatures 169

The technique is particularly simple to use if the cryptosystem is reversible, i.e.
if it is also true (using the notation of the previous section) that:

D(E(d,SKA),PKA) = d

since then the ordinary encryption and decryption functions can be used to gen-
erate and verify signatures respectively. RSA is a reversible cryptosystem in this
sense. Obviously, a reversible cryptosystem also permits message recovery, so
that the content of the original message is revealed to the verifier.

In practice, what actually gets encrypted in order to form the signature is not neces-
sarily the message itself, since the signature would then normally be as long as the
message, which may be wasteful (both of time and space, since RSA encryption is
time-consuming). Instead, it is common to encrypt a message digest derived from
the message by use of a standard one-way hash function, and to send this encrypted
digest as the signature together with the plaintext message. This style of signature
is known as a digital signature with appendix. To verify the signature, the receiver
itself evaluates the digest from the plaintext message, and compares it with the de-
crypted signature. This is the approach used in the so-called PKCS #1 scheme [248]
and in the NIST Digital Signature Standard [258] described below.

There are two competing standard schemes for PKCS digital signatures in wide-
spread use. The first directly uses the idea of a reversible cryptosystem as defined
above and forms the basis of the ISO standard ISO9796 [183, 184]. ISO9796 does
not specify a particular PKCS, but requires one which permits message recovery,
such as RSA. The competing standard is the Digital Signature Standard (DSS) [258]
adopted by the National Institute of Standards and Technology (NIST) in USA
for use in US Federal systems. This uses a variant of the rather more complicated
El Gamal cryptosystem, together with the SHA one-way hash function, to produce
a digital signature with appendix. In slightly more detail, the signature algorithm
(which is actually called DSA) makes use of the following data:

p The modulus, a prime number of size between 512 and 1024 bits
q A prime factor of (p−1), of size 160 bits
h A random integer such that 1 < h < (p−1) and h(p−1)/q mod p > 1
g = h(p−1)/q mod p
x ∈ Zq
y = gx mod p

Here (p,q,g,y) form the public key (where p, q and g can in fact be shared between
a large number of users) and x is the private key. To sign a message m, a random
key k < q is chosen, and the signer evaluates the pair of integers (r,s) which make
up the signature:

r = (gk mod p) mod q

s = (k−1 · (H(m)+ x · r)) mod q

It follows that both of these values are of size 160 bits. They are sent to the verifier
together with the hash value of the message, H(m). To verify the signature, the

170 6 Security

verifier evaluates v as follows:

w = s−1 mod q

u1 = (H(m) ·w) mod q

u2 = (r ·w) mod q

v = ((gu1 · yu2) mod p) mod q

For a correct signature, v = r, and the received hash value must also match the
plaintext of the message, m.

6.4 Entity Authentication

Although digital signatures permit the unambiguous attribution of a single message
to a particular originator, this is not in general enough to set up an authenticated two-
way conversation between two entities, say A and B, so each of them is convinced
that it really is talking to the other. If B receives a message signed by A, this only
shows that A orginally constructed the message, not that A is currently active and
just sent the message to B. So B, instead of talking to his friend A, may be fooled
into talking to a malicious intruder, as illustrated in Figure 6.6.

Fig. 6.6 Poor authentica-
tion: The malicious intruder
has disguised himself as an
innocent friend.

The general requirements for entity authentication between A and B are:

Evidence: A must produce evidence of its identity, typically by producing (or at
least demonstrating knowledge of) a specific secret which unambiguously iden-
tifies A and which B can verify.

Non-transferability: B cannot use the information obtained from A to imperson-
ate A to a third party, say C.

No third-party impersonation: No third party, say M, can succeed in imperson-
ating A by executing the protocol with B.

No leakage: These properties must hold, regardless of how many times A and B
execute the authentication protocol.

Whether these requirements can be satisfied in practice depends to a considerable
extent on the type of evidence used and the style of protocol. It is customary to
identify three styles of evidence:

1. Weak authentication, where a password or other simple identification code,
such as a PIN code, is used as the secret.

6.4 Entity Authentication 171

Protocol 21

(a) Message 1 A→ B : NA
Message 2 B→ A : {(NA,A)}SKAB

(b) Message 1 A→ B : NA
Message 2 B→ A : {(NB,NA,A)}SKAB
Message 3 A→ B : {(NA,NB)}SKAB

Fig. 6.7 Basic secret key entity authentication protocols for (a) unilateral and (b) mutual authen-
tication. Here, SKpq is a secret key for communication between p and q, Np is a ‘nonce’ (see main
text) constructed by p, and {m}k denotes the message m encrypted with key k.

2. Strong authentication, where a cryptographically secure form of challenge and
response is used. The basic idea is that a correct response to the challenge can
only be produced by a party who knows the relevant secret.

3. Zero-knowledge authentication, where knowledge of the secret can be demon-
strated without any information about the secret being revealed at all.

We shall here focus on strong authentication, which is relatively secure and widely
used.

6.4.1 Authentication with Secret Key Cryptosystems

In a secret key cryptosystem, each pair of parties has a mutual, secret key, and pos-
session of this key is taken as evidence that a given entity is what it claims to be.
If we assume that both A and B already know this secret, SKAB, then B can authen-
ticate itself to A by a two-way exchange of a challenge and a response, as shown
in Figure 6.7(a). The quantity NA used in the challenge is a piece of data explicitly
constructed by A to identify this conversation. Such a piece of data, explicitly con-
structed to be fresh, is usually termed a nonce. This is a generalisation of the unique
references used in several of the protocols of Chapter 4. For authentication purposes,
a random number generated by a cryptographically secure random number genera-
tor4 is the commonest choice, but a timestamp or other reference whose freshness
can be guaranteed can also be used. In the response, B returns the nonce encrypted
with the shared secret key, SKAB, to A. If A can decrypt the response and find the
nonce which it sent to B, it is willing to accept that it is in contact with an active
entity which it can identify as B. The corresponding challenge-response protocol for
mutual authentication of A and B involves a three-way exchange as in Figure 6.7(b).
These mechanisms are two of the basic mechanisms used in Part 2 of ISO Standard
9798 for authentication using symmetric encipherment algorithms [187].

4 This is a generator which produces a sequence of numbers, such that it is computationally infea-
sible for a third party, even after observing a long sequence, to deduce the next number which will
be generated.

172 6 Security

Fig. 6.8 Authentication via
an Authentication Server.
By suitable exchanges with
the trusted Authentication
Server, S, systems A and
B agree on a shared secret
which authenticates them to
one another.

S

A B

Protocol 22

Message 1 A→ B : A
Message 2 B→ A : {(A,NB)}SKBS
Message 3 A→ S : (A,B,NA,{(A,NB)}SKBS)
Message 4 S→ A : {(B,NA,SKAB,{(A,NB,SKAB)}SKBS)}SKAS
Message 5 A→ B : {(A,NB,SKAB)}SKBS
Message 6 B→ A : {N′B}SKAB
Message 7 A→ B : {N′B−1}SKAB

Fig. 6.9 Needham and Schroeder’s secret key authentication protocol.
Here, SKpq is a secret key for communication between p and q, Np is a ‘nonce’ (see main text)
constructed by p, and {m}k denotes the message m encrypted with key k.

If, on the other hand, the two parties have never communicated with one another
before, and have no built-in pre-knowledge, they need a protocol to agree on the
shared secret. The usual scheme in this case is for them both to exchange messages
with a trusted authentication server, which in what follows we shall denote S. This
is illustrated in Figure 6.8. Several protocols, in the literature often known as key ex-
change protocols or authentication protocols, have been published for this purpose.
Figure 6.9 shows Needham and Schroeder’s protocol [99] as modified in [100].

Protocol 22 starts (Message 1) with the initiator telling B who he is. B replies
with a so-called authenticator (Message 2), consisting of A’s identification and a
nonce, NB, chosen by B and encrypted with the key which B uses to communicate
with the authentication server, SKBS.

A cannot decrypt the authenticator, but passes it on to the server in Message
3, which also contains the identities of both A and B and a nonce constructed by
A. Note that, at this stage, nothing has been revealed to either A or B or possible
intruders which they did not know already. Although A (and the intruders) have
seen the authenticator, it can only be read and checked by the real B or by the server.

The server, which knows all about everybody’s secret keys, can now decrypt
the authenticator, and construct a new one, still encrypted with SKBS, but now also
containing the new secret key SKAB which is to be used for communication between
A and B:

{(A,NB,SKAB)}SKBS

6.4 Entity Authentication 173

This is sent to A together with B’s identity, A’s nonce and the new key in Message 4,
which is encrypted with the key which A and S use for mutual communication. This
protects the vital new secret against observation by parties other than the real A.

A is now in a position to check that the reply from the server (Message 4) con-
tained the nonce which A supplied for this conversation, and that no intruders have
managed to change the intended identity of the opposite party, B. This could occur
if an intruder modified Message 3 or replaced it by replaying a ‘Message 3’ from a
previous run of the authentication protocol. If everything appears OK, A accepts the
key SKAB as the genuine one for use in communication with B. A then sends B, as
Message 5, the modified authenticator which A has just received from the server:

{(A,NB,SKAB)}SKBS

B can decrypt this message and also get the new secret key. At the same time, B can
see that Message 5 is not a replay by checking its own nonce, NB. Thus B must also
believe that the identity A is the correct identity for the other party, as authenticated
by the server.

The final two messages are needed in order for each party to be certain that the
other exists and actually possesses the key. There is a clear analogy here to the
3-Way Handshake protocol described in Section 4.3.3, and the challenge-response
schemes used in Protocol 21. In Message 6, B uses the new secret key to send a
new nonce to A, who modifies the new nonce in some agreed manner (indicated in
Figure 6.9 by subtraction of 1 from its value) to protect against simple replaying by
an intruder, and returns the modified value to B, encrypted with the new secret key.
In principle these exchanges could be piggy-backed on the first real messages of the
conversation, but the idea of the protocol is to complete the authentication before
exchanging any real information which might be of value.

6.4.2 Authentication with Public Key Cryptosystems

With public key cryptosystems, an entity A can prove its identity to B in one of two
ways:

1. By digitally signing a challenge and sending it to B.
2. By decrypting a challenge which has been encrypted with A’s public key, and

which B has sent to it.

Both of these possibilities demonstrate that A has knowledge of A’s private key. The
basic principle is once again to use unique references (nonces) in order to establish
the integrity and timeliness of the exchange. The basic protocols using the digitally
signed challenges are shown in Figure 6.10, which corresponds to Figure 6.7 for
SKCSs. {q,PKq}SKS , containing the party q’s identity and public key, encrypted by
the secret key of S, is usually known as q’s certificate. S is here assumed to be a
trusted authority which can certify that q is associated with the public key PKq. We
shall consider certificates in more detail in Section 6.4.4 below. The mechanisms

174 6 Security

Protocol 23

(a) Message 1 A→ B : NA
Message 2 B→ A : ({(B,PKB)}SKS ,NB,NA,A,{(NB,NA,A)}SKB)

(b) Message 1 A→ B : NA
Message 2 B→ A : ({(B,PKB)}SKS ,NB,NA,A,{(NB,NA,A)}SKB)
Message 3 A→ B : ({(A,PKA)}SKS ,B,{(NA,NB,B)}SKA)

Fig. 6.10 Basic public key entity authentication protocols using digital signatures for (a) unilateral
and (b) mutual authentication.
Here, PKq is q’s public key, SKq is q’s private key, Np is a nonce constructed by p, and {m}k
denotes message m encrypted with key k..

Protocol 24

Message 1 A→ S : (A,B)
Message 2 S→ A : {(B,PKB)}SKS
Message 3 A→ B : {(A,NA)}PKB
Message 4 B→ S : (B,A)
Message 5 S→ B : {(A,PKA)}SKS
Message 6 B→ A : {(NA,NB)}PKA
Message 7 A→ B : {NB}PKB

Fig. 6.11 Needham and Schroeder’s public key authentication protocol.
Here, PKq is q’s public key, SKq is q’s private key, Np is a nonce constructed by p, and {m}k
denotes message m encrypted with key k.

shown here are used in Part 3 of ISO Standard 9798, which describes authentication
mechanisms using digital signatures [188].

The alternative technique of response by decryption of a challenge is illustrated
by Protocol 24, which shows Needham and Schroeder’s protocol for this purpose.
Firstly (Messages 1 and 2), A has an exchange with the server to obtain B’s public
key, PKB. This step, together with Messages 4 and 5 in which B obtains A’s public
key, could be omitted if it is assumed that all parties are aware of everyone’s public
keys. Note that the replies in both cases are encrypted with the server’s private key,
SKS. This ensures integrity rather than secrecy, since of course anyone can decrypt
such a message using the server’s public key (which everybody knows!). Integrity is
important, however, to protect against intruders changing the message and inserting
their own identities and private keys. The reply from the server, containing B’s iden-
tity and public key, encrypted with the trusted server’s secret key, is B’s certificate.

Message 3, which can only be understood by B, then tells B that someone claim-
ing to be A wishes to communicate with him, and sends a nonce as a reference for
the conversation. Of course Message 3 might have been sent by an intruder, say C,
since it is encrypted with a public key. However, since B will obviously send the
reply to A and encrypt it with A’s public key (obtained from the trusted server), C

6.4 Entity Authentication 175

will not get much benefit from his efforts – although A might of course be surprised
to get such an unexpected ‘reply’.

After, if necessary, getting a certificate containing A’s public key from the server
(Messages 4 and 5), B then replies to A (Message 6), sending A’s nonce and a nonce
which B has just created, NB. These are encrypted with A’s public key, so that only A
can understand them. Again, this message might be sent by an intruder, but now the
nonces can be used to check the integrity of the exchange, just as in the Three-way
Handshake protocols presented in Section 4.3.3. In fact the only real difference is
the use of encryption in the current protocol. Thus the final message (Message 7)
works exactly like the ‘third hand’ in the handshake, confirming to B that it really is
A which is the other party to the conversation. The purpose of the encryption here is
to ensure that only the intended recipient can understand the message.

This style of entity authentication, known as three-way strong authentication is
used in the ISO/ITU-T Directory [180]. This is intended to support a worldwide
lookup service for information on telecommunications users, electronic mail users
and so on. Thus it is obviously important that unauthorised persons should not be
able to change the information in the database or to read information which they are
not supposed to have access to.

6.4.3 Proofs of Authentication Protocols

Informal arguments about authentication protocols are, if anything, even more prone
to unsuspected errors than arguments about simple data transfer or even Byzantine
protocols. The reason for this is that entity authentication is not based on the idea
that the two parties merely get the same data, but on the idea that each of them
believes that the other gets the same data – the shared secret – and that nobody else
gets to see these data. Thus the proof must demonstrate that, from certain initial
assumptions about what can be believed about the system, it is possible to deduce
the beliefs which imply authentication.

A formal proof system for dealing with this style of proof is given by Burrows,
Abadi and Needham [21]. This is based on a modal logic for beliefs, often known
as BAN logic after its originators. A special notation is used for describing beliefs
and other relevant assertions about the system. In the following description, which
we have modified very slightly, P and Q are parties who communicate with one
another or with third parties, K is a key, and X is a logical proposition. Messages
are identified with propositions.

P |≡ X P believes X to be true.
P |∼ X P once said X . This does not imply anything about how long ago this

happened, but it does imply that P believed X at the time.
P �−→ X P has jurisdiction over X . This means that P should be trusted on

matters concerning X .

176 6 Security

P K←→ Q P and Q may properly communicate using the good key K. That the
key is good means that it will never be discovered by anyone except P
and Q or a party trusted by both of them.

{X}K X is encrypted using the key K.
P�X P sees X . P has received a message containing X and can read it (pos-

sibly after decryption). This implies that P can also send X in subse-
quent messages.

�X X is fresh. This means that X has not been sent before the current
execution of the protocol. By definition, nonces are always fresh.

P→ Q : X P has sent X to Q.

In terms of this notation, the goal of authentication between two parties A and B is
to establish the following beliefs for a certain key K:

A |≡ A K←→ B (1)

B |≡ A K←→ B (2)

A |≡ B |≡ A K←→ B (3)

B |≡ A |≡ A K←→ B (4)

Beliefs 1 and 2 state that both parties believe that a certain key is suitable for secure
communication between them, in the sense that it is new and unknown to others
(except trusted parties, such as the server). Beliefs 3 and 4 state that each party
is convinced that the other party believes that the key is suitable. This may seem
unnecessary, but it avoids situations such as the one in which A asks a server to
generate a secret key and pass it both to A and B. In such a situation, B has no way
of knowing whether A actually exists any more. Effectively, 3 and 4 state that each
party believes that the other party currently exists.

The inference system for this modal logic uses the following inference rules,
which are here expanded somewhat in relation to Burrows et al. [21]. As usual,
conjunction of propositions is indicated by the use of commas.

1. Message meaning
Γ � P |≡ Q K←→ P, P�{X}K

Γ � P |≡ Q |∼ X

In other words, if P receives a message X encrypted with K, and knows that K is
Q’s key for communicating with P, then it can believe5 that Q once said X .

2. Nonce verification
Γ � P |≡ �X , P |≡ Q |∼ X

Γ � P |≡ Q |≡ X

If P believes that X is a fresh message, and that Q once said X , then it can believe
that Q still believes X . Note that this is the only rule which can ‘promote’ a state-

5 Note that “A can believe X” here and elsewhere in this section means “A can reasonably believe
X”. In other words, it is a valid logical deduction that A believes X .

6.4 Entity Authentication 177

ment involving |∼ to one involving |≡. Effectively, it says that fresh and only fresh
messages are to be taken seriously, reflecting the similar concerns which we have
discussed in Chapter 4.

3. Jurisdiction
Γ � P |≡ Q �−→ X , P |≡ Q |≡ X

Γ � P |≡ X

If P believes that Q has jurisdiction over X , then it can have the same beliefs about
X that Q has.

The next four rules state that P believes a set of statements if and only if P
believes each of them individually:

4. And-Intro.
Γ � P |≡ X , P |≡ Y

Γ � P |≡ (X ,Y)

5. And-Elim.
Γ � P |≡ (X ,Y)

Γ � P |≡ X

6. Believe And-Elim.
Γ � P |≡ Q |≡ (X ,Y)

Γ � P |≡ Q |≡ X

7. Said And-Elim.
Γ � P |≡ Q |∼ (X ,Y)

Γ � P |≡ Q |∼ X

The next two rules reflect the idea that in a secret key system, the same key is
used in both directions for communications between two parties:

8. Key symmetry
Γ � P |≡ R K←→ S

Γ � P |≡ S K←→ R

9. Believe key symmetry
Γ � P |≡ Q |≡ R K←→ S

Γ � P |≡ Q |≡ S K←→ R

If P sees a composite statement then it also sees this statement’s components,
and likewise, things which P can see can be assembled into a composite statement:

10. See components
Γ � P� (X ,Y)

Γ � P�X

11. Message composition
Γ � P�X ,P�Y
Γ � P� (X ,Y)

P can see the plaintext of an encrypted statement if it has the necessary key, and
can use a key which it possesses to encrypt a statement which it can see:

178 6 Security

12. Decryption
Γ � P |≡ Q K←→ P, P�{X}K

Γ � P�X

13. Encryption
Γ � P |≡ Q K←→ P, P�X

Γ � P�{X}K

If P believes that part of a message is fresh, then P can reasonably believe that
the entire message is fresh:

14. Freshness extension
Γ � P |≡ �X

Γ � P |≡ �(X ,Y)

This is a consequence of the assumption that the cryptosystem offers perfect en-
cryption, and thus also perfect integrity.

If P can see a message, and P sends the message to Q, then Q can see the message:

15. Message transfer
Γ � P�X ,P→ Q : X

Γ � Q�X

Finally, if P has a (correct) belief about something, then P can also formulate this
belief so that it can see a message expressing it:

16. Believing is seeing
Γ � P |≡ X
Γ � P�X

A correct belief is one that is derivable from the assumptions by the use of one
or more of the above inference rules.

6.4 Entity Authentication 179

To demonstrate the use of this proof system, let us consider the Needham and
Schroeder secret key protocol given previously as Protocol 22. The assumptions
for this protocol are:

1. A |≡ A
SKAS←→ S

2. S |≡ A
SKAS←→ S

3. B |≡ B
SKBS←→ S

4. S |≡ B
SKBS←→ S

5. S |≡ A
SKAB←→ B

6. A |≡ S �−→ A K←→ B

7. B |≡ S �−→ A K←→ B

8. A |≡ S �−→ �(A K←→ B)

9. A |≡ �NA
10. B |≡ �NB

11. S |≡ �(A
SKAB←→ B)

12. A � NA
13. B � NB
14. B � N′B

Assumptions 1–5 and 9–11 are routine. Assumptions 6 and 7 state that the clients,
(A,B), trust the server, S, to make new keys for A and B. Assumption 8 states that
A furthermore trusts S to generate a new key which can also be used as a nonce. Fi-
nally, assumptions 12–14 state that A and B can see nonces which they have invented
for themselves.

The protocol can be described in terms of abstract messages, rather than the
concrete ones given before, as:

Message 1 A→ B :
Message 2 B→ A : {NB}SKBS

Message 3 A→ S : (NA,{NB}SKBS)

Message 4 S→ A : {(NA,A
SKAB←→ B, �(A

SKAB←→ B),{(NB,A
SKAB←→ B)}SKBS)}SKAS

Message 5 A→ B : {(NB,A
SKAB←→ B)}SKBS

Message 6 B→ A : {(N′B,A
SKAB←→ B)}SKAB

Message 7 A→ B : {(N′B,A
SKAB←→ B)}SKAB

The initial part of the proof demonstrates that Messages 1–3, together with the
assumptions, enable S to see the things which are necessary in order to send Message
4, and that these can be encrypted with the key SKAS:

180 6 Security

S �{(NA,A
SKAB←→ B, �(A

SKAB←→ B),{(NB,A
SKAB←→ B)}SKBS)}SKAS

We leave this part of the proof as an exercise. The proof continues as follows:

1. ⇒ {..., Message 4 transfer}
A�{(NA,A

SKAB←→ B, �(A
SKAB←→ B),{(NB,A

SKAB←→ B)}SKBS)}SKAS

2. ⇒ {1, Assumption 1, Message meaning}
A |≡ S |∼ (NA,A

SKAB←→ B, �(A
SKAB←→ B),{(NB,A

SKAB←→ B)}SKBS)
3. ⇒ {Assumption 9, Freshness extension}

A |≡ �(NA,A
SKAB←→ B, �(A

SKAB←→ B),{(NB,A
SKAB←→ B)}SKBS)

4. ⇒ {2, 3, Nonce verification}
A |≡ S |≡ (NA,A

SKAB←→ B, �(A
SKAB←→ B),{(NB,A

SKAB←→ B)}SKBS)
5. ⇒ {4, And-elim}

A |≡ S |≡ A
SKAB←→ B

6. ⇒ {5, Assumption 6, Jurisdiction}

A |≡ A
SKAB←→ B

7. ⇒ {4, And-elim}
A |≡ S |≡ �(A

SKAB←→ B)
8. ⇒ {7, Assumption 8, Jurisdiction}

A |≡ �(A
SKAB←→ B)

9. ⇒ {1, Assumption 1, Decryption}
A� (NA,A

SKAB←→ B, �(A
SKAB←→ B),{(NB,A

SKAB←→ B)}SKBS)
10. ⇒ {9, See components}

A�{(NB,A
SKAB←→ B)}SKBS

11. ⇒ {10, Message 5 transfer}
B�{(NB,A

SKAB←→ B)}SKBS

12. ⇒ {11, Assumption 3, Message meaning}
B |≡ S |∼ (NB,A

SKAB←→ B)
13. ⇒ {Assumption 10, Freshness extension}

B |≡ �(NB,A
SKAB←→ B)

14. ⇒ {12, 13, Nonce verification}
B |≡ S |≡ (NB,A

SKAB←→ B)
15. ⇒ {14, Believe And-elim.}

B |≡ S |≡ A
SKAB←→ B

16. ⇒ {15, Assumption 7, Jurisdiction}

B |≡ A
SKAB←→ B

17. ⇒ {11, Assumption 3, Decryption}
B� (NB,A

SKAB←→ B)

6.4 Entity Authentication 181

18. ⇒ {17, See components}
B�A

SKAB←→ B
19. ⇒ {18, Assumption 13, Message composition, Encryption}

B�{(N′B,A
SKAB←→ B)}SKAB

20. ⇒ {19, Message 6 transfer}
A�{(N′B,A

SKAB←→ B)}SKAB

21. ⇒ {6, 20, Message meaning}
A |≡ B |∼ (N′B,A

SKAB←→ B)
22. ⇒ {8, 21, Nonce verification}

A |≡ B |≡ (N′B,A
SKAB←→ B)

23. ⇒ {22, Believe And-elim.}

A |≡ B |≡ A
SKAB←→ B

24. ⇒ {20, Message 6 transfer}
B�{(N′B,A

SKAB←→ B)}SKAB

25. ⇒ {24, 16, Message meaning}
B |≡ A |∼ (N′B,A

SKAB←→ B)
26. ⇒ {Assumption 10, Freshness extension}

B |≡ �(N′B,A
SKAB←→ B)

27. ⇒ {25, 26, Nonce verification}
B |≡ A |≡ (N′B,A

SKAB←→ B)
28. ⇒ {27, Believe And-elim.}

B |≡ A |≡ A
SKAB←→ B

The four framed beliefs, which follow from steps 6, 16, 23 and 28, are the beliefs
required for demonstrating authentication.

6.4.4 Certification Authorities

A certificate is a structure which can be exchanged with other parties to pro-
vide proof of identity. Certificates are particularly important in systems which use
PKCSs, so that users can be certain who owns the public keys which are in use. For
electronic commerce, the use of certificates is usually considered essential, so that
customers, traders and financial institutions can all identify themselves to one an-
other in a trustworthy manner. We have in previous examples used simplified forms
of certificate which just contained the owner’s identity and public key. In reality,
most certificates nowadays are so-called X.509v3 certificates, i.e. they follow ver-
sion 3 of the ITU-T standard X.509, originally designed for use with the ITU-T
Directory [180]. A basic X.509v3 certificate contains:

182 6 Security

• The version of the X.509 standard which applies to the certificate (for example,
version 3).

• An identification of the owner, A.
• The owner’s public key, PKA.
• A description of the encryption algorithm for which the key is intended (for ex-

ample, RSA).
• The period of validity of the certificate.
• An identification of the particular certificate, such as a serial number.
• A description of the algorithm used for generating the issuer’s signature (for

example SHA-1 hash with RSA encryption).
• An identification of the issuer of the certificate, S.
• The issuer’s digital signature, DSS, for the content of the certificate.

Additional information may appear in the form of extensions, which can describe
the applications for which the key has been issued, the security policy associated
with the certificate, the Web site at which information about revoked (cancelled)
certificates can be found, and so on. Since X.509 certificates were originally de-
signed for use with the ITU-T Directory, the identities of the owner and the issuer
are specified as X.500 names in terms of a set of attributes; we shall describe these
in more detail in Section 7.1.1. The issuer is expected to be a trusted party, in the
sense described in the previous sections, and is known as a Certification Authority
(CA). Since the certificate associates its owner, A, with a public key, PKA, it is often
said to be a certificate for the owner’s public key.

In the real world, there are not one but many Certification Authorities, and the
problem arises of how users whose certificates are issued by different authorities can
identify themselves to one another in a trustworthy manner. A model which defines
which relationships of trust exist between multiple CAs is denoted a trust model.
In many practical systems, the trust model is hierarchical, so that for one CA, say
CAi, to trust a certificate issued by another, say CA j, it must be able to refer to a
common ancestor in the hierarchy, say CAa, who can confirm that CA j’s certificate
is genuine. This idea is illustrated in Figure 6.12. An arrow from X to Y in the figure
indicates the relationship Y can trust X, implying that X can issue a certificate for
Y ’s public key. To validate a certificate issued by a given CA j, it is necessary to be
able to follow an unbroken directed path from a CA which the verifier trusts a priori
to CA j. Such a path is known as a certification path.

Hierarchical trust models come in several variants, depending on whether it is
possible for a CA lower in the hierarchy to certify the public keys of its immediate
superior or not. Figure 6.12(a) depicts a strict hierarchical (or rooted chain) model,
in which certificates can only be issued for inferiors. It is then necessary for CAi to
know (and trust) the public key of the root of the hierarchy and to apply to the root
in order to be able to trace a certification path down to the authority, CA j, which
issued the certificate in question. For example, to verify a certificate issued by CA3,
CA2 would follow the procedure:

6.4 Entity Authentication 183

CA0 CA0

CA4 CA4CA3 CA3CA2 CA2

CA1 CA1

(a) (b)

Fig. 6.12 Hierarchical trust models.
(a) In a strict hierarchical model, a CA can only issue a certificate for CAs which are its immediate
inferiors. (b) In a hierarchy with reverse certificates, a CA can also certify the public key of its
immediate superior, so trusted information can propagate both up and down in the hierarchy.

1. Apply to the root CA0 to get a certificate {(CA1,PK1)}SK0 , signed by CA0, asso-
ciating CA1 with the public key PK1. By using the trusted public root key, PK0,
this certificate can be opened to obtain a trusted copy of PK1.

2. Apply to CA1 to get a certificate {(CA3,PK3)}SK1 , signed by CA1, associating
CA3 with the public key PK3. By using the key PK1 just obtained from CA0, this
certificate can be opened to obtain a trusted copy of PK3.

3. Use PK3 to verify the certificate {(U,PKU)}SK3 , signed by CA3, which is of
interest.

Figure 6.12(b) depicts a hierarchy with reverse certificates, where a CA can also
certify the validity of its superior’s key. In this case, CAi can check the validity of a
certificate issued by CA j by tracing a path up the hierarchy to the nearest common
ancestor and down to CA j, and the procedure for CA2 to verify a certificate issued
by CA3 becomes:

1. Look up locally to find a reverse certificate {(CA1,PK1)}SK2 , signed by CA2,
associating CA1 with the public key PK1. This gives CA2 direct access to a trusted
copy of PK1.

2. Apply to CA1 to get a certificate {(CA3,PK3)}SK1 , signed by CA1, associating
CA3 with the public key PK3. By using the trusted key PK1, this certificate can
be opened to obtain a trusted copy of PK3.

3. Use PK3 to verify the certificate {(U,PKU)}SK3 , signed by CA3, which is of
interest.

Some systems, including those based on the ITU-T X.509 standard [180], allow
more general trust models, such as general digraphs, in which any CA may certify
the validity of any other CA’s public key. This tends to reduce the lengths of the
necessary certification paths, making the protocol more efficient.

184 6 Security

Protocol 25

Message 1 A→ B : αxA mod q
Message 2 B→ A : αxB mod q

Fig. 6.13 Diffie-Hellman key agreement protocol.
Here, α is a publicly known integer which is a primitive root of a publicly known prime q, and xA
and xB are secret integers known only to A and B respectively.

6.5 Key Exchange

Key exchange (or key establishment) is the general term for the activity of making a
shared secret available to two or more parties. In many cases, as we have seen, key
exchange may be an integral part of the entity authentication process, but there are
several situations in which this may not be appropriate. In particular, two parties may
wish to change their encryption keys from time to time during an exchange, in order
to protect themselves against possible key compromise due to their inadvertently
exposing their keys or due to a successful attack by an adversary. When they change
their keys, they do not necessarily wish to go through the complexity of the general
authentication protocols presented in the previous section.

Key exchange can be based on two fundamental techniques:

Key transport, (or key distribution, in which one party creates or derives the new
secret key and (securely) transfers it to the other party or parties.

Key agreement, in which each of the parties contributes a share of the informa-
tion needed to derive the new secret key. A party can only evaluate the new secret
when it has accumulated all the shares.

The key exchange methods which we have considered in connection with entity au-
thentication have all been based on key transport. The essential feature of all these
is that the creator of the key sends an encrypted message, containing the new key,
some kind of nonce (a timestamp or sequence number) to guarantee freshness, and
possibly a digital signature, to the party who is to receive the key. These require-
ments ensure confidentiality of the new key, integrity and sender authentication. In
some contexts, information about the lifetime of the key may also be desired. Keys
expire at the end of their lifetime and must be replaced by this time at the very latest.

An important example of a key agreement protocol is the Diffie-Hellman proto-
col, historically the first practical solution to the problem of key distribution over
an insecure communication channel [30]. The protocol is given as Protocol 25 in
Figure 6.13. The shared secret which can be evaluated by both A and B after this
exchange is:

K = αxA·xB mod q

which is used as the new secret key. Note that A’s personal secret xA is not revealed
directly to B (or to any adversaries who may be listening), and it is computationally

6.5 Key Exchange 185

αx′B

A

A MKAb)

a) KA

αxAxB

αxA

αxAx′B

αxA

αxB

B KB

B KB

αxAxB

αx′AxB

αx′A

αxB

Fig. 6.14 An attack on the Diffie-Hellman protocol.
(a) Normal operation; (b) During man-in-the-middle attack

Protocol 26

Message 1 A→ B : αxA mod q
Message 2 B→ A : (αxB mod q,{SB(αxB ,αxA)}K)
Message 3 A→ B : {SA(αxB ,αxA)}K

Fig. 6.15 Station-to-Station key agreement protocol.
Here, α is a publicly known integer which is a primitive root of a publicly known prime q, and
xA and xB are secret integers known only to A and B respectively. K is the secret key evaluated
as αxAxB mod q by both A and B, Si(m) denotes message m digitally signed by party i, and {m}k
denotes message m encrypted with key k.

infeasible for B to evaluate xA from (αxA mod q). Likewise, B’s personal secret xB
is not revealed directly to A. Nevertheless, they each receive enough information to
evaluate the new shared secret, K.

Whereas the basic Diffie-Hellman protocol is secure against passive attackers,
who just listen to the exchange of messages, it is not secure against active attackers
who can replace messages by new ones. The classic attack is a so-called man-in-the-
middle attack, in which an attacker M intercepts and changes the messages going
from A to B and vice-versa. This is illustrated in Figure 6.14(b). The attacker M
replaces A’s message αxA by αx′A and B’s reply αxB by αx′B , where both x′A and x′B
have been invented by M. This means that A computes the new key KA = αxAx′B and
B the new key KB = αx′AxB . However, M also possesses all the information needed to
compute both these keys, and is therefore in a position to decrypt all messages sent
from A to B and vice versa, and to re-encrypt them using the intended receiver’s
key. Thus neither A nor B is aware that their exchange of messages is compromised.

The obvious problem is that the messages in Protocol 25 contain no information
which securely identifies their sender or which ensures integrity. A large number of
proposals for ways to improve this situation have been made. As an example, let us
consider Diffie, van Oorschot and Wiener’s Station-to-Station (STS) protocol [31],
as given in Protocol 26. The STS protocol is the basis of the Oakley Key Determi-
nation Protocol [242] used within the IPsec suite of Network layer security proto-
cols [233]. This protocol sends an encrypted, signed copy of the exponentials used

186 6 Security

to evaluate the shared secret key together with the exponentials themselves. This
enables the recipients to check the integrity and source of the received information.
As in the three-way handshake and similar protocols, the third message confirms to
B that the new key K is actually shared with A. These additional features protect the
protocol against the simple man-in-the-middle attack shown in Figure 6.14. How-
ever, users of the protocol should still take care, as you will see if you try to solve
Exercise 6.9. You should never underestimate the difficulty of designing a correct
and secure key exchange protocol!

6.6 Non-cryptographic Methods

Not all forms of security can be provided solely by the use of cryptographic meth-
ods. Some other – rather obvious – techniques are:

Traffic padding used to produce a constant flow of traffic between users of a
service so that information about traffic flow cannot be used to deduce the level
of activity of the users.

Routing control to ensure that data are not routed via ‘sensitive’ sub-networks,
where they perhaps could more easily be tapped. The general subject of routing
is discussed in the next chapter.

Passwords which are typically used for access control.
Smart cards which may be used to contain secret information for access con-

trol, keys or other personal information or which can be used to compute cryp-
tographic functions using a combination of information stored on the card and
information supplied by the user.

Protected channels which because of their technical properties, routing or other
features are resistant to external threats.

Firewalls which are network components which prevent undesired or malicious
traffic from passing into parts of the network where a high level of security is
required.

We shall not go into further details of these methods here.

Further reading

For the basic concepts of security in distributed systems, Part 2 of the OSI Reference
Model [134] is a good source of definitions, and contains some useful tutorial matter
on where in the system it is most appropriate to deal with various kinds of threat.
A large number of general texts on security in computer systems are available, such
as Stallings’ “Cryptography and Network Security” [122] and Pfleeger & Pfleeger’s
“Security in Computing” [106]. These also cover aspects of security which we have
not had space to consider here, such as malicious software (vira, worms and other

Exercises 187

“malware”), operating system security and organisational and legal aspects of secu-
rity. Bishop’s book “Computer Security” [15] gives a more abstract technical review
of the area, with emphasis on the basic principles. General reviews can also be found
in many books on the architecture and design of distributed systems, such as refer-
ence [98].

Brassard’s monograph “Modern Cryptology” [18] is a good modern review of
cryptographic methods, which discusses not only the well-known DES and RSA
methods, but also methods based on newer research, such as keyless cryptography
and quantum cryptography. Schneier’s book “Applied Cryptography” [113] gives a
comprehensive review of cryptographic methods and a detailed presentation of con-
crete algorithms. More mathematical aspects of cryptography are dealt with in the
“Handbook of Applied Cryptography”, edited by Menezes, van Oorschot and Van-
stone [89]. The proceedings of the annual conference on Advances in Cryptology
report on the most recent developments.

Exercises

6.1. In a distributed system which uses a public key cryptosystem, there are two
distinct forms of double encryption which assure the receiver, say B, that only the
sender, say A, could have sent a message m and only the receiver can read it:

1. E(E(m,PKB),SKA)
2. E(E(m,SKA),PKB)

Can B conclude the same about these two messages? If not, in what essential manner
do they differ?

6.2. Suppose A forms a digital signature for message m by encrypting a message
digest (hash value) for m with A’s private key, SKA, as suggested in the text. It is
then possible for A to deny having sent the message, by claiming that an intruder
had stolen the secret key and sent the message without A’s knowledge. Suggest ways
of avoiding this problem.

6.3. Unique identification of a sender, A, by a digital signature based on a reversible
public key crytosystem relies on the assumption that a message enciphered by A
using his secret key SKA can only be deciphered using a unique key, K, which is A’s
public key, PKA. Is it in fact certain that such a unique key exists?

Note: In the general case, this is a very challenging problem, so you may restrict
your answer to the RSA cryptosystem. (Even so, you may need to investigate quite
a lot of literature to find the answer.)

6.4. In the text, the initial part of the proof of correctness of Needham and Schroeder’s
authentication protocol is missing. Use the proof system given in the text to prove
that in fact Messages 1–3 of the protocol, together with the assumptions given on

188 6 Security

page 179, enable us to infer that S can see the things necessary to send Message 4
and that they can be encrypted with key SKAS, i.e. that:

S �{(NA,A
SKAB←→ B, �(A

SKAB←→ B),{(NB,A
SKAB←→ B)}SKBS)}SKAS

6.5. The protocol for secret key authentication originally given by Needham and
Schroeder in [99] differs from the final version given here as Protocol 22, essentially
by omitting messages 1 and 2. The protocol was:

Message 1 A→ S : (A,B,NA)
Message 2 S→ A : {(B,NA,SKAB,{(A,SKAB)}SKBS)}SKAS

Message 3 A→ B : {(A,SKAB)}SKBS

Message 4 B→ A : {N′B}SKAB

Message 5 A→ B : {N′B−1}SKAB

This protocol turned out to be inadequate to ensure authentication, and had to be
modified as shown in Protocol 22. Explain what the weakness of this protocol was,
and why the modifications are a cure for the weakness.

6.6. In a secure distributed system which uses a public key cryptosystem, a mecha-
nism is needed for the distribution of public keys. It is obviously important that this
distribution cannot be ‘faked’, so that, say, a message claiming to give the public key
for the police has actually been sent out by a group of drug barons. Suggest a proto-
col for solving this problem. Make sure to describe carefully which of the messages
sent in the protocol are encrypted, by whom they are encrypted and decrypted, and
which keys are used in each instance.

Is your protocol also suitable for the distribution of secret keys in secret key
cryptosystems?

6.7. In many computer systems, the user has to type in a password in order to obtain
access to any particular system. Discuss the various ways in which this password
might be revealed to persons who are not supposed to know it. You should bear
in mind that the system on which the user actually types in the password may be
connected to the system to which access is desired by some kind of communication
network. Then suggest how the methods discussed in this chapter could be used to
prevent unauthorised persons from obtaining the password.

6.8. When certificates are used to provide authentication, it is important that a cer-
tificate can be revoked if it is no longer valid – for example, if the key which it
contains is known to be compromised, or if the owner of the certificate ceases to
exist. Suggest a suitable protocol for dealing with revocation in the case of a system
with multiple certification authorities, based on an hierarchical trust model.

6.9. The Station-to-Station protocol given as Protocol 26 is sensitive to a type of
man-in-the-middle attack in which the attacker changes the first message from A
to B, so that it looks as though it came from a third party, C. (Technically, this can
be done by changing the sender address in the PDU.) B then replies to the intruder,

Exercises 189

who sends the reply on to A. When A sends its third message, it belives that it is
talking to B, whereas B believes it is talking to C. Suggest ways of avoiding this
type of attack.

For a bigger challenge, try to use BAN logic to prove that your improved protocol
offers correct assurances to the parties involved.

Chapter 7
Naming, Addressing and Routing

“. . . The name of the song is called ‘Haddock’s Eyes’.”
“Oh, that’s the name of the song, is it?” Alice said, trying to feel inter-
ested.
“No, you don’t understand,” the Knight said, looking a little vexed.
“That’s what the name is called. The name really is ‘The Aged Aged
Man’.”
“Then I ought to have said, ‘that’s what the song is called’?” Alice cor-
rected herself.
“No, you oughtn’t: that’s another thing. The song is called ‘Ways and
Means’: but that’s only what it’s called, you know!”
“Well, what is the song, then?” said Alice, who was by this time com-
pletely bewildered.
“I was coming to that,” the Knight said. “The song really is ‘A-sitting on
a Gate’: and the tune’s my own invention”.

“Alice through the Looking-Glass”
Lewis Carroll

In the previous chapters of this book, we have implicitly assumed that the sender of a
message knows the identification of its intended receiver, and that the service which
the sender uses to pass the message knows not only the location of the destination
within the distributed system, but also how to get there. The senders and receivers
have, of course, been active objects (described by processes) within the system.
More generally, we may need to have a similar sort of knowledge about passive
objects, such as data which we wish to get hold of. The question now arises as to
where all this knowledge comes from, and how it is passed round in the system. In
this chapter we shall try to answer this question.

7.1 General Principles of Naming and Addressing

Following the terminology of Shoch [115], which has been taken over in a somewhat
modified form by ISO, we distinguish between the following types of identifier for
an object in a distributed system:

191

192 7 Naming, Addressing and Routing

• A name, which is an identifier permanently associated with an object, regardless
of the object’s location within the distributed system.

• An address, which is an identifier associated with the current location of the
object.

• A route, which is an identifier associated with the path to be followed in order to
reach the object.

The general requirement for a scheme of identifiers in a distributed system is that it
must make it possible to deal with situations where:

1. Objects can move from one system to another.
2. References may be made to objects within a general class, with automatic se-

lection of an appropriate object from the class, according to some convenient
selection criterion such as efficiency of access. Identifiers which can be used in
this way are often denoted Generic Identifiers or Anycast Identifiers.

3. The same identifier can be used to refer to a whole class of objects, so that many
objects have the same identifier. Identifiers of this type are often denoted Group
Identifiers or Multicast Identifiers.

4. The same object may be referred to by different identifiers, for example from
different entities or different systems. If this is possible, we say that the identifi-
cation system permits Alias Identifiers or Equivalence Identifiers.

The distinction between names and addresses makes it possible to deal with the
first situation, involving the construction of a (possibly distributed) directory, which
can be abstractly described as a mapping from names to addresses.

Generic identifiers can in principle also be dealt with by means of a directory,
which in this case must be a mapping from names to sets of addresses. However,
as we shall see later, this is not always a very sensible approach, as it may not
be convenient (perhaps not even possible) permanently to maintain instances of all
possible generically identified objects on all systems where they might be required.
It may therefore be necessary to create a new instance of an object when it is referred
to, and this is not compatible with the classical idea of a passive directory used only
for lookup purposes.

How alias identifiers are dealt with depends on the purpose for which they have
been introduced. There are a number of important possibilities:

• To allow the ‘external’ name of an object seen from other parts of the distributed
system to be different from the name used locally by, say, the local operating
system (OS). This makes it possible to set up a uniform global identifier scheme
which hides the fact that objects are in fact distributed over many systems.

• To allow several global identifiers for the same object (‘global aliases’).
• To allow human users to use different identifiers from the internal identifiers used

within the computers.

In this connection it is convenient to introduce the concept of a local implementation
identifier, which is an identifier acceptable to the local OS of the system in which
the object is located. The same object may be identified within its local system by
another identifier, which we shall call a unique local identifier, which has a form

7.1 General Principles of Naming and Addressing 193

which follows some global convention within the distributed system, and which is
therefore globally acceptable, though only unique within the scope of, say, a sin-
gle system or entity. Finally, the object may be identified throughout the distributed
system by one or more global identifiers, which uniquely identify the object every-
where.

To deal with all these identifiers, a set of mappings is in general required, defin-
ing the correspondences between local unique identifiers and local implementa-
tion identifiers, and between global identifiers and local implementation identifiers.
These mappings are sometimes known as the local contexts and the global context
respectively. Some of the mappings may, of course, be identity mappings, and will
in general be so in homogeneous distributed systems (i.e. ones whose component
systems are identical – at least with respect to naming conventions).

We can formalise these ideas a little more, as follows:

Directory: NAME �→ ADR
or: NAME �→ ADR-set

Routing context: ROUT E �→ ADR∗

Local context: ULID �→ LIID
Global context: GLID �→ LIID

where

Name, NAME ⊆ ID
Address, ADR ⊆ ID
Route, ROUT E ⊆ ID
Global identifier, GID ⊆ ID
Unique local identifier ULID ⊆ ID
Local implementation identifier LIID ⊆ ID

where ID is the domain of identifiers.
The strategic questions to be answered in connection with naming and addressing

within a particular distributed system are then:

1. What types of identifiers (names, addresses, routes) are to be used in each proto-
col layer for referring to active and passive objects respectively?

2. If names are to be used, how are the Directory and Routing context mappings to
be implemented?

3. Are generic identifiers required?
4. What scheme of global and/or local identifiers is to be used, and how are the

mappings from these to local implementation identifiers to be implemented?
5. Are alias names other than those implied by the local and global context map-

pings required, and at what level (several GIDs, several ULIDs within each sys-
tem, several LIIDs)?

There are no absolute answers to these questions. However, the way in which they
are answered in a particular system may have considerable influence, both with
respect to ‘what can be done’ within that system, and with respect to the efficiency

194 7 Naming, Addressing and Routing

of the transfer of information within the system. What follows is therefore a series
of general ideas on this subject, rather than a set of hard and fast rules for what to
do.

7.1.1 Naming Strategies in the Upper Layers of the System

The upper layers of a distributed system offer a service to a conceptual ‘application
user’. In general, this gives the user one of two possible views of the system:

1. The transparent view, where the user cannot see that the system on which she
runs her application is distributed. This implies either that the individual systems
at the various locations are completely homogeneous (they are then often said
to be monotype), or that all objects are identified by global identifiers whose
structure does not reveal the location of the object within the network. If the
latter is true, then the identifiers are global names rather than addresses or routes.

2. The system-specific view, where the user specifically refers to the location of the
desired object when referring to it. This implies that the user provides some kind
of address in order to identify the object.

Generally speaking, the system-specific view is preferred in distributed systems
which have the character of pure networking systems, where the network merely
provides remote access to any of the host computers which are attached to it, but
where there is little or no cooperation between these computers during the execu-
tion of applications. When extensive cooperation between the individual systems
during the execution of an application is envisaged, the transparent view is normally
preferred.

Since it may also be desirable to provide the application user with access to
services both by generic identifier and specific identifier, there are four principal
identifier schemes available. For example, to specify that we wish to communicate
with a process offering a line printer service (i.e. acting as spooler for a line printer),
we might be able to choose as shown in the following table:

View
Identification Transparent Specific
Generic ‘any line printer service’ ‘any line printer service on sys-

tem XXX’
Specific ‘any PostScriptTM printer service’ ‘the PostScriptTM printer service

on system XXX’

A particularly general way of dealing with all these possibilities is offered by
naming based on attributes. This is the scheme used in the ISO/ITU-T Direc-
tory [173, 174, 178, 179], and often referred to as X.500 naming, after the series
of ITU-T recommendations (X.500 to X.521) which describe it. In such a naming
scheme, each ‘name’ consists of a list of attributes. Some of these correspond to
what we would ordinarily consider a name, others describe various properties of

7.1 General Principles of Naming and Addressing 195

Table 7.1 Attributes for X.500 naming (after [178]).

Attribute & Mnemonic Description
Labelling attributes

Common name, CN The usual name for the object.
Surname The family name of a person.
Serial number The serial number of a device.

Geographical attributes
Country name, C
Locality name, L
State or province name, S
Street address

Organisational attributes
Organization name, O The company or institution.
Organizational unit name, OU The department, group or unit.
Title, T The title or function of a person.

Explanatory attributes
Description Descriptive information: interests, keywords, etc.
Search guide Suggested search criteria.
Business category The occupation or similar of a person.

Postal addressing attributes
Postal address
Postal code

Telecommunications addressing atributes
Telephone number
Telex number
Teletex terminal identifier
Facsimile telephone number
X121 address (see Section 7.2.1)
International ISDN number

OSI Application attributes
Presentation address (see Section 7.2.1)
Supported Application Context (see Section 10.2)

Relational attributes
Member A group of names associated with an object.
Owner The name of an object responsible for some other object(s).
See Also A reference to other entries in the directory which describe the

same object.
Security attributes

User password
User certificate (see Section 6.4.2)

the object or user concerned, such as its organisational properties (‘in the R&D De-
partment’), telephone number, occupation, location, aliasing information, authenti-
cation information and so on. A selection of the attributes proposed for use in X.500
naming [178] is given in Table 7.1. To name an object, it is necessary to supply
a set of attributes which describe it sufficiently uniquely for the purpose in hand;
this will obviously depend on whether generic or specific identification is required.
Since some of the attributes may describe the system to which the object or person
is attached, they make it possible to cater for both transparent and system-specific
naming strategies.

196 7 Naming, Addressing and Routing

Root

Fig. 7.1 An X.500 Directory Information Tree.

Although this is not essential, most proposals for using attributed-based naming
assume that the attributes are arranged in some kind of hierarchy. This simplifies
lookup, by making it possible to check off the more general attributes (such as the
country where the object is located) before going on to the more specific ones. It also
makes it possible to divide the directory up into hierarchically organised domains,
which can be administered by different authorities. We shall look at some of the
consequences of this in Section 7.1.3 below. In X.500 the hierarchy is known as the
Directory Information Tree (DIT).

An example of an X.500 DIT is shown in Figure 7.1. Note that, although it is a
tree, it is not a strict layered hierarchy, as the Locality attribute is sometimes above
the Organisational Unit attribute, and sometimes below it, depending on how the
administrators of the different domains determine that things should be organised.
Given this particular DIT, the name:

{C=GB, L=Cambridge, O=Slush Funding Ltd., CN=Ivor Fiddle}

would uniquely identify the person known as Ivor Fiddle, and so in fact would the
name:

{C=GB, O=Slush Funding Ltd., CN=Ivor Fiddle}

Of course, this only works if Slush Funding Ltd. have no Ivor Fiddles working for
them at other localities than Cambridge or in other organisational units than the
Creative Accounting department.

A particular example of the use of X.500 names is in systems for handling elec-
tronic mail according to the ISO MOTIS and ITU-T MHS standards [191], where
they are usually referred to as O/R names. O/R stands for Originator/Recipient, re-
flecting the fact that they identify the sender or receiver of the electronic mail.

7.1 General Principles of Naming and Addressing 197

Name
server

Client
entity

req(nam)

resp(addr)

Fig. 7.2 Obtaining an address from a name server.
The name nam is passed to the server, and the corresponding address addr is returned to the client.

7.1.2 Directories and Servers

If the transparent view is to be offered to users, there must be a global naming
scheme with globally available directories. A convenient way to implement these in
many distributed systems is by means of a so-called name server.

A server is a specialised active object (most often a software process) which
mediates, and in many cases controls, access to objects of a particular type. In the
case of a name server, these objects are directory entries – mappings from names to
addresses. Access to the server typically follows the RPC convention described in
Section 4.3.2. For a name server, the calling parameter is usually just the name for
which the corresponding address is required, and the return parameter is the address.
This is illustrated in Figure 7.2.

A name server can be implemented for names valid within any convenient scope
(in OSI Reference Model notation: any domain), such as a single layer, a single sub-
network or a single system. In the last case, the names may either be global names
referring to objects in the relevant system, or they may be local unique names. If
local names are used, a globally valid directory can only be constructed by providing
an additional server which can construct unique global names from the local names
and knowledge of their locations.

A name server within a layer normally only contains the names of other active
elements (entities) associated with the layer, and providing services to the users of
this layer. The nature of the registered entities depends strongly on the layer and the
system architecture, since different architectures make use of different degrees of
specialisation among entities. As an example, consider the Application Layer, i.e.
that layer which directly offers services to the application processes and their users.
Two common architectures present themselves:

1. Server-based: In this architecture, the distributed system is partitioned into a set
of specialised systems, each offering a particular application-related service to
the user. Traditional examples are: clock servers, printer servers, terminal cluster
servers, file servers, database servers and language translator (compiler) servers,
each providing access to the objects its service type implies.

2. General entity: In this architecture, most commonly associated with large het-
erogeneous networks offering OSI services, the entities of the Application Layer

198 7 Naming, Addressing and Routing

Name
server

Client
entity

req(gnam)

resp(addr)

Process
server

req(gnam)

resp(nam, addr)

Fig. 7.3 Creating an instance of a generic object by using a process server.
The generic name gnam is passed to the name server, which requests the process server to create
an instance of the object and then returns its address addr to the client.

offer general combinations of services, and give access to general facilities within
their host systems.

In other layers, the distinction between these architectures is less clear, as layer
entities are more likely to be identical in all systems, so that the same service is
offered everywhere.

When an entity is started, it must announce its presence to the name server, send-
ing its name and address. When it terminates, the name and address must be re-
moved again. Objects controlled by servers, on the other hand, are catalogued by
their own server and are not directly registered by the name server. It should be
obvious that the name server’s own address must be constant and well-known to
everyone, so that it can always be consulted or reported to.

This organisation is appropriate if specific identifiers are used. If generic identi-
fiers are used, there are two possibilities: One is for the name server to contain the
addresses of all relevant instances; when asked for an address, it can reply with the
‘nearest’ one to the enquirer. This is only appropriate if all possible instances of the
generic object are available all the time. This may be a very wasteful disposition.
An alternative policy is to create a new instance as and when required, and in this
case the name server will ask a process server to create the required instance and
return its address. This is illustrated in Figure 7.3.

A final variation on the name server theme is the trader. This mediates contact to
a suitable object on the basis of requirements specified by the client. Typically, these
requirements would specify the interfaces (expressed in terms of function names and
the corresponding argument types and result types) for the functions to be provided
by the object, and the trader then tries to find an object which offers at least the
required functionality. This type of server is, for example, often found in distributed

7.1 General Principles of Naming and Addressing 199

XY

Z

W

a
b

c

a

b
q

r

s

m

na
b

1
2

3

W X Y Z

a b c m n a b

a b q r s

1 2 3

Fig. 7.4 A distributed system with domain structure (after [141]).
Left: The domain structure of the system; Right: The logical tree structure of the domains.

systems which are constructed from objects in accordance with the Common Object
Request Broker Architecture (CORBA) specifications, a set of industry standards for
distributed object-oriented systems [101].

7.1.3 Distributed Directories

In a small distributed system, based on a small physical network, the Application
Layer name server is usually centralised, in the sense that it is implemented on a
single physical system. This corresponds to there being a single naming domain at
this level. As networks become larger, there are administrative and technical advan-
tages in dividing them up into several logical or physical domains. Logical domains
are convenient to administer, as they may be associated with different organisations
or different parts of an organisation. A division into physical domains is usually mo-
tivated by technological considerations. For example, a large network may consist
of several sub-networks. If it is a Wide Area Network, offering public network ser-
vices, the sub-networks may correspond to different geographical regions, different
countries, and so on. In Local Area Networks, the sub-networks may be based on
different technologies, for example with a high-capacity backbone network which
connects several lower-capacity networks, which in turn reach out to the individual
user workstations or whatever.

The overall structure of the identifier space (the names if it is a logical domain
structure, or the addresses if it is a physical domain structure) then becomes as
shown in Figure 7.4.

Within such systems, it is convenient to distribute the directory, so that a sub-
directory is implemented within each sub-domain (at least down to a certain depth

200 7 Naming, Addressing and Routing

Fig. 7.5 Spanning Tree for
Emulation of Broadcasting.
The graph shows all the direct
connections between sub-
directories. The edges marked
with arrows form a spanning
tree for the graph, with root in
A. From A the query is sent
to the set of sub-directories
marked B, from them to those
marked C, and from them to
those marked D.

D

B B

BB

B

A

C

CC

C

CD

in the tree). Providing a sub-directory for each logical domain makes the directory
easy to administer, as responsibility for the allocation of names and the registration
of names lies with the same administratative authority. Providing a sub-directory
for each physical domain offers the potential advantage of robustness with respect
to failures within sub-networks. However, distribution of the directory can also give
rise to a number of difficulties, which have to be taken care of.

Using Broadcasts for Directory Lookup

Lookup in a distributed directory cannot always be dealt with by a simple exchange
of messages between the user and its local name server – if the name to be looked
up is not known in the local sub-directory, there must be a protocol for passing
on the enquiry to other sub-directories. One obvious possibility is to broadcast the
query to all sub-directories. Unfortunately, unless the network has been specially de-
signed for this purpose, a true broadcast service is unlikely to be available, precisely
because the network is partitioned into sub-networks. Broadcasting will therefore
have to be emulated by a series of point-to-point communications. As we have seen
in Chapter 5, this may be an expensive solution, both in terms of time and messages
sent. The best that can be done is often to allow the enquiry to spread out among the
sub-directories in a tree-like manner: the local sub-directory to the initial enquirer
asks those sub-directories which it can contact directly (or those that are ‘nearest’
in some sense), and waits for their replies. Each of them either replies itself, if it
knows the answer, or asks a new sub-set of sub-directories and waits for their reply,
and so on.

For efficiency, it will usually be desirable to ensure that sub-directories do not
get asked more than once. A simple way to ensure this is by only sending queries
along the branches of a spanning tree (in the graph-theoretical sense) covering all
sub-directories, as illustrated in Figure 7.5. Separate spanning trees must, of course,
be defined for each individual sub-directory as root. Construction of the spanning
trees can be based on pre-knowledge of the topology of the network, or by using a
distributed algorithm.

7.1 General Principles of Naming and Addressing 201

Figure 7.5 only shows how the query is propagated through the tree of sub-
directories. There are then two strategies for how to return the replies: In the chain-
ing strategy, a sub-directory which can answer the query sends its reply back to the
system (the original client or one of the intermediate sub-directories) from which
it received the query, which then passes the reply on to the system from which it
received the query and so on. Thus propagation of queries spreads out through the
spanning tree as a wave from the root to the leaves, and collection of replies as a
wave from the leaves to the root, as in the diffusing computations used in the broad-
cast protocols discussed in Chapter 5. In the alternative strategy, sometimes known
as (direct) referral, a sub-directory which can answer the query sends its reply di-
rectly back to the originator of the query at the root of the spanning tree. This may
increase efficiency in the system. In practical systems with distributed directories,
the originator will of course – regardless of which reply strategy is used – usually
cache recent replies, in order to avoid unnecessary lookup operations in the common
case where the same information is to be used several times within a short period of
time.

When the distributed system to be covered by the directory becomes very large,
simple-minded broadcasting is no longer an efficient way of disseminating queries,
since there may be thousands or even millions of sub-directories which have to
be consulted before the response to a query can be found. A number of heuristics
which shorten the lookup process have therefore been investigated. A good example
of this is found in the Internet Domain Name System (DNS), which is intended to
offer directory services throughout the global Internet, and which we consider in the
next section.

Replicated Directories

Another possible solution to the lookup problem is to arrange for there to be sev-
eral copies of all or part of the directory. The directory is then said to be (fully or
partially) replicated. Note that with full replication each sub-directory covers the
complete naming domain of the entire distributed system. In very large networks,
this is impractical, but in smaller networks it can be a useful technique, especially
as it gives excellent protection against failure of a single sub-directory. Lookup is
then easy, but insertion of new entries in the directory requires some kind of broad-
casting, and so does deletion of entries when an object catalogued in the directory
becomes unavailable.

If the broadcast is not ‘instantaneous’, or if it can fail to reach some destinations,
there is the potential problem that different sub-directories at certain times may con-
tain different information, and thus be inconsistent. To some extent, this situation
can be avoided by the use of protocols which are more complex than simple broad-
casts, such as the two-phase commit protocol presented in Chapter 5. However, it
is only to some extent. The problem is that commit protocols are designed only to
carry out the requested changes if all parties agree to them. A little thought will
(hopefully) convince you that this can often be acceptable when directory entries

202 7 Naming, Addressing and Routing

have to be inserted, i.e. when a new object becomes available, since the worst thing
that can happen is more or less that a long time may pass before the rest of the
system gets to know that this object is available. When an object has to be deleted,
the commitment protocol is counter-productive, since it prevents anyone being told
about the demise of the object until everyone has been told about it! This is not much
help if the object already is dead and unable to take part in any further activity.

On the whole, a better strategy is usually to use a simple protocol for spreading
information about directory changes, and to construct the protocols used to access
objects in such a way that they are resilient to finding ‘nobody at home’. In other
words, a user first tries to communicate with an object at whatever address the near-
est sub-directory tells her (or even at the last known address which she herself can
remember without consulting the directory). If this fails, she asks the sub-directory
again after a suitable delay. This procedure continues until success is obtained, or
until the user decides to give up. The same strategy is equally useful with cen-
tralised directories, to guard against the possibility that the object has moved (or
been removed) since the directory was consulted.

Constructing Unique Global Names

A second problem with distributed directories is how to ensure uniqueness of global
names. As with many other problems in distributed systems, the possible solutions
fall into three classes:

1. Centralised. A central facility allocates (and deallocates) unique global identi-
fiers on demand. The facility could, for example, be incorporated in a process
server. Potentially this gives a problem of reliability, just as with a centralised
name server, but in practice this problem does not seem to be important.

2. Isolated. Each system allocates its own identifiers without explicit reference to
other systems. This is more robust than the centralised strategy, but requires a
system-wide convention for how global identifiers are to be chosen, to avoid
name conflicts. Essentially, this obliges global names in fact to be global ad-
dresses, in the sense that the identifier space is partitioned, and each partition is
associated with a particular system. (How else would you define an address?)
This suits the system-specific view of objects discussed in the previous sec-
tion, but not the transparent view. This is the strategy proposed in ISO Standard
11578 [208], according to which a Universal Unique Identifier (UUID) is con-
structed by concatenating the time of day, the address of the system and a random
number.

3. Truly distributed. Each system allocates global identifiers after reference to the
others. This can be more robust than the centralised strategy, although robust al-
gorithms (as discussed above) can give poor response if some systems are unable
to answer queries due to failure. Generally speaking, it will also be necessary to
use broadcasting, which again may be expensive.

7.1 General Principles of Naming and Addressing 203

Compromise strategies, such as having a centralised allocator for each sub-domain,
corresponding to (say) a sub-network, are evidently also possible. So the system
designer has a whole spectrum of combinations at his or her disposal, depending
on the system requirements for robustness, cost (in some general sense), system
transparency and response time. General rules for what to choose can not be given
here.

7.1.4 Internet Naming and the Internet DNS

A well-known example of a domain-oriented naming strategy is the one used in the
Internet for identifying systems at the Network Layer and above. The names are
generally known as host names, although strictly speaking they identify network
interfaces. Since a host may have several network interfaces (for example, if it lies
on the boundary between two sub-networks) and since alias names are also permit-
ted, a host may have several names. A name is conventionally written as a series of
elements separated by dots. For example:

www.rfc-editor.org
hobbits.middle-earth.net
student31.imm.dtu.dk
itsy.bitsy.polkadot.bikini.fr
stop.it

An Internet host name has no fixed length and its structure reflects the adminis-
trative domains which are responsible for allocating the name. The elements of
the name are given from left to right in order of increasing significance. For ex-
ample, www.rfc-editor.org refers to the the system www within the sub-domain
rfc-editor within the top level domain org.

The top level domain is usually a two-letter code referring to a particular country
(dk, it, uk, ru,. . .) or to a general class of names (org, net, mil, com,. . .), each of
which has its own naming authority responsible for allocating names. For example,
names in the top level domain dk are administered by the Danish naming authority,
those in ru by the Russian authority, and so on, while names in org (which be-
long to non-profit organisations) are administered by the Public Interest Registry in
Virginia, USA, those in net and com by Verisign Global Registry Services and so
on1. A full list of the rules can be found in reference [221], and a list of the current
“generic domains”, published by the Internet Assigned Numbers Authority (IANA),
which administers names and addresses in the Internet, can be found on the Web at:

http://www.iana.org/domain-names.htm

Note that Internet host names really are names and so do not necessarily tell you
anything about where in the world the system is located or what services it offers,

1 In practice, the domain administrator often passes on the task of actually registering the names
to one or more companies which act as registrars.

204 7 Naming, Addressing and Routing

just as your personal name does not tell anything about where you are located or
what you do. The Internet name just tells you about where the name has been reg-
istered. And although it is conventional to give hosts which offer particular services
names which reflect these services (so the name of the Web server in domain xxx
often has the name www.xxx, and the mail server the name mail.xxx), there is no
guarantee that this is the case.

In many cases, for practical reasons, the top-level registration authority delegates
the ability to register names to the sub-domains under its control. So for example,
with a name such as student31.imm.dtu.dk, the sub-domain name dtu would
be registered directly with the dk authority, the sub-sub-domain name imm would
be registered with an authority for dtu.dk, and the actual host name student31
would be registered with an authority for imm.dtu.dk.

The mapping between names and the corresponding addresses is maintained via
the Domain Name System (DNS) [217, 218], a distributed directory into which in-
formation can be inserted and from which information can be retrieved by using
the DNS Application layer protocol. The DNS contains mappings for both the for-
ward (name-to-address) and inverse (address-to-name) directions of lookup. Since
a separate server containing a sub-directory is typically used for each top-level do-
main and sub-domain in the Internet, the DNS protocol uses heuristics in order to
make searching in the large number of sub-directories more efficient than the naive
broadcasting strategy described in Section 7.1.3.

The DNS pre-supposes that each host contains a certain amount of information
about commonly-used name-address mappings, accessible locally by a system com-
ponent known as a resolver. This locally stored information is composed of initial
information loaded when the system is initialised, together with cached results from
recent queries. If the resolver cannot find the required mapping locally, it will send
a query to a DNS server which it knows about. Two modes of lookup are defined:

1. Iterative lookup: If a DNS server does not know the answer to an incoming
query, it will refer the originator of the query to one or more further servers
on which the requested information may possibly be available. It is up to the
originator to decide how to exploit this referral information. If a DNS server
knows the answer to the query, it will reply directly to the originator. This mode
of lookup must be supported by all servers.

2. Recursive lookup: If a DNS server does not know the answer to the query, it
will automatically pass it on to one or more other DNS servers which it believes
will know the answer. If they do not know the answer, they pass it on to further
servers, and so on in a recursive manner. Responses to queries are returned to
the originator of the query by the directory chaining strategy described above.
Servers have the option of whether or not to support this mode of lookup.

These query modes are illustrated in Figure 7.6 on the next page.
Parameters in the query are used to specify which direction of lookup (forward or

inverse) is required, and which mode of lookup is preferably to be used. Remember,
however, that servers do not need to support recursive lookup; if a recursive lookup
query arrives at a server which does not support this feature, the server is allowed

7.1 General Principles of Naming and Addressing 205

Cache

User Resolver

Local

Process

Database

DNS
Server 2

Database

DNS
Server 1

INTERNET

query re
sp

on
sequ

er
yresponse

response

query
Local System

Fig. 7.6 Modes of lookup in the Internet DNS.
The full arrows indicate the progress of a query which propagates recursively to DNS Server 1
and DNS Server 2, and the corresponding response from DNS Server 2 back to the resolver. The
dashed arrows indicate the final step of an iterative lookup, where DNS Server 1 has referred the
resolver to DNS Server 2.

to reply with a referral as in iterative lookup. A further characteristic of the Inter-
net DNS is that, in addition to caching recently used name-address mappings, the
servers can explicitly fetch mappings for complete domains from other servers, in
order to have the information available locally. This feature, known as zone transfer,
makes it possible to introduce a controlled amount of replication in the directory.

In principle, DNS servers can point to more knowledgeable servers anywhere in
the Internet. In practice, the sequence in which servers will be asked generally fol-
lows a standard heuristic which reflects the hierarchical domain naming structure:
Just as names are generally registered via a hierarchy of registration authorities,
so name-address mappings are registered in a hierarchy of name servers, as illus-
trated in Figure 7.7. So after a query from a resolver has initially been sent to the
DNS server in the local (sub-)domain, it will then if necessary be sent to a so-called
root server for the top-level domain referred to in the query, and then successively to
servers for lower and lower sub-domains of this top-level domain, until the answer is
found or the search terminates wihout an answer. For example, if the resolver and the
local domain server do not know the answer, a query referring to student31.imm
.dtu.dk will first be directed to an authoritative server for dk, and then (if neces-
sary) successively to authoritative servers for dtu.dk and imm.dtu.dk. As in the
case of naming authorities, the authoritative server for a particular domain will usu-
ally, for practical reasons, initially just contain information about the sub-domains
immediately below it in the name hierarchy. But as time goes by, it may accumulate
information about further sub-domains by means of caching or zone transfers.

In addition to the well-known generic domains and country domains, the Internet
DNS contains a special naming domain, in-addr.arpa, which is used to simplify

206 7 Naming, Addressing and Routing

o
r
g

e
d
u

c
o
m

d
k

f
r

n
e
t

i
a
n
a
a
c
m
i
e
e
e
i
s
o

d
t
u
i
t
s
t

a
d
m
i
m
m
m
a
t

i
p
l

c
o
m

.
.

u
k

.

.

.

a
c

g
o
v
o
r
g

c
o

C
ou

nt
ry

 d
om

ai
ns

a
c
c

i
n
−
a
d
d
r

a
r
p
a

1
0

1
8

2
6
1
9
2

0
1

2
.
.
.
1
7

1
2

5.
.
.2
2
5

G
en

er
ic

 d
om

ai
ns

Fi
g.

7.
7

D
om

ai
n

an
d

na
m

e
se

rv
er

hi
er

ar
ch

ie
s

in
th

e
In

te
rn

et
D

N
S

O
nl

y
so

m
e

of
th

e
In

te
rn

et
do

m
ai

ns
ar

e
sh

ow
n.

Ty
pi

ca
lly

,a
n

au
th

or
ita

tiv
e

na
m

e
se

rv
er

fo
re

ac
h

na
m

in
g

do
m

ai
n

co
nt

ai
ns

na
m

e-
ad

dr
es

s
m

ap
pi

ng
s

fo
ra

tl
ea

st
th

e
do

m
ai

ns
at

th
e

le
ve

li
m

m
ed

ia
te

ly
be

lo
w

it
in

th
e

tr
ee

.T
he

sp
ec

ia
ld

om
ai

n
a
r
p
a
.
i
n
-
a
d
d
r

co
nt

ai
ns

in
ve

rs
e

m
ap

pi
ng

s.

7.2 Addressing Structures 207

Table 7.2 Important types of Resource Record in the Internet DNS

RR Type Content of Rdata
A The address corresponding to the Owner Name
CNAME The canonical name corresponding to the Owner Name, when the latter is

an alias.
MX The name of a host which is willing to act as a mail exchange for the Owner,

and a priority used to choose a suitable mail exchange if there are several
candidates.

NS The name of the authoritative name server for the Owner’s domain.
PTR The name of a location in the name space. (Typically used to give the name

corresponding to an address in the in-addr.arpa domain.)

the task of inverse lookup). The name servers for sub-domains immediately below
in-addr.arpa contain address-to-name mappings for physical networks and gate-
ways, while those further down in the hierarchy contain the mappings for individual
systems. So, for example, to look up the Internet name corresponding to the Internet
address 10.2.23.27 (see Section 7.2.2), a query which cannot be answered locally
will be sent to an authoritative name server for domain 10.in-addr.arpa, and
then if necessary to a name server for 2.10.in-addr.arpa, and finally to one for
23.2.10.in-addr.arpa.

The actual directory databases used in the Internet DNS need amongst other
things to store information about forward and inverse mappings, alias names, and
pointers to other servers. This information is stored in Resource Records (RRs) of
different types. Each RR contains fields specifying:

• Owner Name: The name of the node in the naming tree which the RR describes;
• Time-to-Live (TTL): The time left before the RR will be discarded. This is used

to limit the lifetime of cached RRs;
• Type: The type of the RR;
• Rdata: Information specific for the given type of RR.

The content of the RData in the most important types of RR is summarised in
Table 7.2.

7.2 Addressing Structures

The directory concept neatly solves the problem of how to allow objects to move
round in a distributed system, by permitting a clear distinction to be kept between
names and addresses. Thus names and addresses can have quite different structures,
and, in particular, the structure of addresses can be chosen to permit efficient solu-
tion of the ‘real’ addressing problem:

1. How to find the way to the destination system.
2. At the destination system, how to recognise that the PDU is in fact intended for

a protocol entity within that system.

208 7 Naming, Addressing and Routing

(N)-User

(N)-Entity

(N)-User

(N)-Entity

(N+1)-LAYER

(N)-LAYER

(N)-SAPs
with (N)-Addresses

(N+1)-Entities
with (N+1)-Titles

(N)-Entities
with (N)-Titles

(N-1)-SAPs
with (N-1)-Addresses

Fig. 7.8 Names and Addresses in the OSI Reference Model

For generality, we shall discuss addressing in terms of a layered architecture,
using OSI notation. The basic concepts are illustrated in Figure 7.8. An (N+1)-
Entity, which lies within the (N+1)-Layer, acts as an (N)-User, i.e. as a user of the
(N)-Service. In general, it is identified by a name, known as an (N+1)-Title, and
is attached to an (N)-SAP. This (N)-SAP is identified by an (N)-Address, to which
other (N)-Users may direct (N)-SDUs which are intended for this (N)-User.

In terms of this notation, there are three basic addressing structures which may
be used for constructing the (N)-Address [40]:

1. Hierarchic, in which case it is constructed from the (N-1)-Address associated
with the (N)-Entity which takes part in the provision of the (N)-Service offered at
the (N)-SAP concerned. The (N)-Address is constructed from the (N-1)-Address
by concatenation with a selector, which for (N)-Addresses is usually denoted an
(N)-Selector:

(N)-address = (N−1)-address ̂ (N)-selector

This permits conversations associated with several (N)-SAPs to go via the same
(N-1)-SAP, a technique often known as address multiplexing.

2. Partitioned, in which case it is constructed by concatenation of a Domain Iden-
tifier with a Sub-domain address, where each domain is associated with a group
of (N)-SAPs within the network, and the sub-domain addresses select particular
(N)-SAPs within the given domain:

(N)-address = (N)-domain-id ̂ (N)-sub-domain-address

It is an assumption with this form of addressing that domains are completely
disjoint, and that sub-domains within a domain are similarly disjoint. However,
sub-domains may themselves be partitioned into sub-sub-domains, and so on in a
recursive manner. With this form of addressing, (N)-Addresses are not related in
any particular way to (N-1)-Addresses, so the (N)-Entities must explicitly main-
tain or use an address mapping function from (N)-SAPs to (N-1)-SAPs within
the (N)-Layer. In return for this, this form of addressing can ease the implemen-
tation of the routing function, if the domains are associated with natural divisions

7.2 Addressing Structures 209

in the network – such as sub-networks. We have already discussed how this can
come about in connection with directory implementations.

3. Flat, in which case the (N)-Addresses are not directly related to the (N-1)-
Addresses or to any division of the address space into domains. This addressing
structure does not give the (N)-Entity any help at all, but obliges it explicitly to
keep track of the relationship between (N)-SAPs and their associated (N-1)-SAPs
and also of routing information.

7.2.1 OSI Addressing

The general addressing structure for use within OSI standards is described in Part
3 of the OSI Reference Model (Reference [135]). Basically, this states that within
layers above the Network Layer, an hierarchic addressing structure is used. Di-
rectories are then only required for the Application Layer and the Network Layer.
The Application Layer directory responds to enquiries concerning a named Appli-
cation Process (Presentation Service User) instance by providing the enquirer with
the P-address 2 of the PSAP to which the P-User is attached. The hierarchical ad-
dressing principle is then consistently applied through the upper four layers of the
architecture, as follows:

P-address = N-address ˆ T-selector ˆ S-selector ˆ P-selector

S-address = N-address ˆ T-selector ˆ S-selector

T-address = N-address ˆ T-selector

In the Network Layer, the structure of the Network Address is defined in a gen-
eral manner in [135], and more specifically in the Network Service standard, (Ref-
erence [141]). This decrees that OSI N-Addresses shall have the partitioned form.
This is hardly surprising, as one of the functions of the Network Layer is to perform
route selection. This can be made significantly easier if partitioned addresses are
used. Partitioned addressing structures have in fact traditionally been used in many
types of communication network. Well-known examples are the telephone network,
and public international data networks, in which addressing follows ITU-T Recom-
mendation X.121. In the telephone network, the address (‘number’) has the structure
of a country code, followed by an area code, followed by a ‘subscriber number’. In
X.121 there are several possibilities, one of them essentially the same as for tele-
phones, the other with just a Digital Network Identifier Code (DNIC) followed by a
subscriber number. This type of partitioned address is illustrated in Figure 7.9.

Within the Network Layer, a further directory is envisaged, which relates physi-
cal system identifiers to Network Addresses, and (if desired) to routes. The mainte-
nance of this routing information will be discussed in the next section. In practice,

2 In OSI work, it is common practice to abbreviate layer names by their initial letters or similar:
Thus, P-Address for Presentation Address, P-User for Presentation Service User, and similarly S-
(Session), T- (Transport), N- (Network), D- (Data Link) and Ph- (Physical).

210 7 Naming, Addressing and Routing

} }

} } }}} IDI, Initial Domain Identifier DSP, Domain
Specific PartAFI, Authority &

Format Identifier

Country Host system
Network

X.121 address

IDP, Initial Domain Part

Fig. 7.9 ISO Network addressing using X.121 addresses.
The AFI in the ISO Network address identifies the type of address in use by means of a 2-digit
code. For an X.121 address, the code is 36 when the DSP is in a BCD encoding, and 37 when it is
in a pure binary encoding; the actual X.121 address (the IDI) consists of up to 14 digits in a BCD
encoding.

the ‘physical system identifier’ is often an identification for the hardware adaptor
card used to attach the system to the network. For example, in a local area net-
work it will almost always technically speaking be a Media Access Control (MAC)
address, such as an Ethernet or Token Ring address.

7.2.2 Internet addressing

The addressing structure used in networks which utilise the Internet protocol suite
is a simplified version of the OSI structure. Within the Network Layer, which uses
the DoD Internet protocol (IP), systems are identified by a partitioned address, usu-
ally known as an IP address. The Domain Name System (DNS) is used to map the
human-readable system names (“host names”), which are partitioned to reflect an
administrative domain structure (see Section 7.1.4) to IP addresses.

In the classic version of the IP protocol (known as IPv4 [210]), the address is
represented by 32 bits. Originally, the leading bits indicated the so-called class of
the address. This specifies whether the address is for a single host or a multicast
group, and in the case of a single host determines the length of the network iden-
tifier and host identifier, reflecting some historical idea about how many hosts the
network is likely to have. The number of bits which identify the network (or in-
dicate that the address is the address of a multicast group) is often specifed by a
so-called netmask, which is the pattern of bits which can be used to remove the host
id or multicast group id part of the address. The general structure of the address
is shown in Table 7.3. The traditional human-oriented representation of Internet
IPv4 addresses and netmasks is as a sequence of four (decimal) integers, where
each number lies in the range [0..255] and is the decimal value corresponding to
8 bits of the address. So for example 129.131.68.63 must be a Class B address
(the leading bits of the first octet are 10), with network ID 000001 10000011 and

7.2 Addressing Structures 211

Table 7.3 IPv4 address structure and netmasks for class-based addressing

Network Leading Network ID Host ID Netmask
Class bits (bits) (bits)

A 0 7 24 255.0.0.0

B 10 14 16 255.255.0.0

C 110 21 8 255.255.255.0

Multicast 1110 Group ID (28 bits) 240.0.0.0

Private Network addresses

class
IPv4 address classesAddress

Multicast group id

Network id

0−255

Host id

0−255224−239

0−255

0−255

0−255

0−255

0−255

0−255192−223

0−2550−255128−191

0−2550−2551−127

168192

16−31172

10 0−255

0−2550−255

0−2550−255

0−2550−255
h h h h h h h h h h h h h h h h h h h

h h h h h h h hh h h h h h h h

h h h h h h h h

h

h h

h h h h h h h hh h h h h h h

h h h h h h h h

h h h h h

Multi−
cast

A

B

C

A

B

C

1

n

n

nn

nnn

0

1

1 1 0

0

nnn

nnnnnnn

0 0 0 10 01

nn

1 1 10 0 0 n n n n0 0 1

n

0 0 0 0 0

n

1 0 1 0 1 0 0 0

n

nn

0

1

1 1 0

0

n n n n n n

n n n n n n

n n n n n

n

n

0

nnnnnn

n

1 1 0

Fig. 7.10 IPv4 addresses (above) and Private Network addresses (below) for class-based
addressing

host ID 01000100 00111111. Similarly, 224.0.1.1 is a multicast address for mul-
ticast group number 257 (the group used for the Network Time Protocol, NTP).
Figure 7.10 illustrates the address structure in more detail.

Not all 232− 1 addresses can be used freely. Traditionally, host IDs consisting
entirely of 0-bits are not used, while a host ID consisting entirely of 1-bits is used
as the broadcast address for the network concerned: any traffic sent to this address
will be directed to all systems within that network. Furthermore, a subset of the IP
addresses in each class is allocated for use in systems which will not be connected
(directly) to the Internet. These are known as Private Network (PN) addresses, and
are of course not globally unique: There can be many systems with the address, say,
192.168.25.1 in the world! PN addresses are commonly used in networks set up
for testing purposes and also in computer clusters. Typically, the individual com-
puters in the cluster do not need to be accessed directly from the Internet. Instead,
all access goes via a front-end system (which has a public Internet address) which

212 7 Naming, Addressing and Routing

C
om

pu
te

rs
 in

 c
lu

st
er

FEInternet

130.225.76.19

192.168.25.1
192.168.25.2

192.168.25.3

192.168.25.4

192.168.25.5

192.168.25.6

192.168.25.7
192.168.25.8

Fig. 7.11 A computer cluster with private network addresses. Only the front-end (FE) has a public
Internet address and can therefore be contacted directly via the Internet.

passes on traffic to and from the cluster computers. This is illustrated in Figure 7.11.

In the more recent IP Version 6 (IPv6), the addressing scheme is extended, so
that the address is represented by 128 bits (conventionally denoted by 8 groups of
4 hexadecimal digits, separated by colons), and several more address classes, each
identified by a particular pattern of leading bits, are available [232].

In practice, class-based addressing is inconvenient, since it is based on the idea
that networks only come in three sizes: Small (Class C, up to 28−2 = 254 hosts3),
Medium (Class B, up to 216− 2 = 65 534 hosts) or Large (Class A, up to 224− 2
= 16 777 214 hosts). Organisations want to be able to have networks with numbers
of hosts given by any power of 2. This is made possible by the so-called Classless
Inter-Domain Routing (CIDR) scheme of addressing [252]. When CIDR is used,
the number of bits used to identify the network is included in the human-readable
form of the address, and is passed to all routers which need to be able to find the
network concerned. For example, an IPv4 CIDR address 130.225.69.17/23 in-
dicates that the first 23 bits of the address identify the network and the remaining
9 bits indicate the system within the network. It is common practice to use the ad-
dress where the host bits are all 0 to refer to the network itself; thus the network
in the above example would be identified as 130.225.68.0/23, and its netmask
would be 255.255.254.0. Correspondingly, the network broadcast address would
be 130.225.69.255/23, where all the host id bits are set to 1. These ideas are
illustrated in Figure 7.12 on the facing page.

In the Internet, application protocols rely directly on a connection-mode or
connectionless-mode Transport service, and do not make use of separate Session and
Presentation layers as in the OSI Reference Model. The overall addressing structure
is therefore reduced to:

T-address = N-address ˆ T-selector

where the T-selector is known as a port. In contrast to the OSI scheme, where T-
selectors are used exclusively for multiplexing purposes and the individual selec-

3 Rember that host id 00000000 is not used, and 11111111 is used as the broadcast address.

7.2 Addressing Structures 213

11111111 11111111 1111111

Broadcast

Hosts

Unused

Decimal IP addresses Binary IP addresses

 :

 :

10000010 11100001 0100010

10000010 11100001 0100010
10000010 11100001 0100010
10000010 11100001 0100010

10000010 11100001 0100010
0 00000001

0 11111111
1 00000000
1 00000001

130.225.68.0
130.225.68.1
 :
130.225.68.255
130.225.69.0
130.225.69.1
 :

10000010 11100001 0100010130.225.69.255
10000010 11100001 0100010 1 11111110130.225.69.254

1 11111111

0 00000000

0 00000000255.255.254.0Netmask

Fig. 7.12 Addresses and the netmask in a CIDR network with 23-bit network id

Table 7.4 Some common assigned Internet ports

Application Port Application Port
FTP data 20 POP3 110
FTP control 21 NNTP 119
TELNET 23 NTP 123
SMTP 25 IMAP 143
DNS 53 LDAP 389
HTTP 80 HTTPS 443

tors have no specific meaning, a long series of the ports available in the Internet
addressing scheme have conventionally been allocated for use with particular ap-
plication protocols. In particular, most standard Internet applications have been as-
signed a port number between 1 and 1023 by the Internet Assigned Numbers Au-
thority (IANA) for use by servers offering the particular application. Some examples
are shown in Table 7.4. For all these examples, the port numbers are identical for
the connection-mode (TCP) and connectionless-mode (UDP) transport protocols,
though this is not necessarily always the case. Port numbers from 1024 up to 49151
can be registered with the IANA for use with specific applications, while those from
49152 and up can be used freely, for example when ports have to be dynamically
allocated. A complete and up-to-date list is maintained by the IANA, and can be
seen on the Web page:

http://www.iana.org/assignments/port-numbers

In the Internet, the translation between network (IP) addresses and physical sys-
tem identifiers is mediated by an Address Resolution Protocol (ARP). This involves
broadcasting a request to all systems in the local sub-net, specifying the IP address
for the system whose physical system identifier is needed; the system with this IP
address must then reply with the corresponding physical system identifier [214]. No
centralised directory is involved, but the individual systems often cache translations
which they use frequently.

214 7 Naming, Addressing and Routing

Table 7.5 Attributes characterising O/R addresses

Attribute Mnemonic
Country name C
Administration domain name ADMD, A
Private domain name PRMD, P
Organization name ORG, O
Organizational unit names OU
Personal name

Surname S
Given name G
Initials I
Generation qualifier GQ

7.2.3 MOTIS/MHS Addressing

Message handling (electronic mail) systems, in ISO known as MOTIS and in ITU-
T as MHS (or more popularly as X.400 systems after the series of ITU-T recom-
mendations which govern their operation), use a more complex style of address-
ing [192], based on the use of attributes like the X.500 naming scheme discussed
in Section 7.1.1 above. In fact, the X.400 address could well be part of an X.500
name, just as we have previously seen that an X.121 address or ISDN number can
be part of it. Each X.400 address is itself made up of a number of (sub-)attributes,
which together characterise the location of the service user who sends or receives an
electronic mail message. This location is in MOTIS/MHS known as the user’s O/R
address, by analogy with the user’s O/R name.

In the X.400 standards it is envisaged that electronic mail can be delivered in
several different ways: To a user in a computer system, to an identifiable terminal in
a network, or even by so-called physical delivery by ordinary post. The form of the
attribute list depends on the intended form of delivery. Here we shall only consider
addressing for delivery to a user in a computer system. The attributes which can be
specified are listed in Table 7.5.

These attributes describe the address in an hierarchical manner, with each country
divided up into two levels of domain, with one or more domains administered by
public telecommunication operators as the upper level, and privately administered
domains (each of which is subordinate to a particular public domain) as the lower
level. Domains are in turn divided into organisations, which typically correspond
to companies, universities, user groups or the like; organisations are divided into
organisational units such as departments or sections (there may in fact be up to four
levels); and organisational units are divided into separately identifiable users.

As long as the address is unambiguous, several of the attributes may be omit-
ted. The Country-name and Administration-domain-name attributes are mandatory,
while the remainder are included as required by the administration or private do-
main in which the user is located. If the Personal-name attribute is used, the Sur-
name component is mandatory and the remaining components are optional. Thus
there is no fixed format for the address; each of the attributes is encoded together

7.3 Routing 215

�

J

�

K

�

L

�I

� H

�E � F � G

�
C

�
D

�
A

�
B

�
�
�
�
�
�
�
�
�
�
�
�
�

�����

�
�

�
��

#
#

#
#

#
#

#
#

#
#

#
##

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
��

�
�

�
��

�
�
�
�
�
�
�
��

�
�

�
�

�
�

�
��

Fig. 7.13 An Example Network.

with a type code indicating which of the attributes it is, using BASN.1 encoding,
which we shall describe in more detail in Chapter 8.

7.3 Routing

Routing is the function of finding a suitable path for PDUs to take from one SAP
to another. In the OSI Reference Model architecture, this function is only relevant
within the Network Layer, as this is the only layer in which there is a concept of a
path between a source and destination, which may involve passing intervening sys-
tems in which there is a choice of path. In the Data Link Layer, communication takes
place between service users in directly connected systems, whereas in the Transport
Layer and above, all transmission is end-to-end, and the intervening systems (if any)
are quite invisible.

Figure 7.13 shows an example of a network. For the purposes of discussing rout-
ing, we assume this is a physical network, with the nodes of the network occupied
by systems, and the edges of the network implemented by communication links of
some kind. To remind you of some useful graph-theoretical notation: Two nodes are
said to be adjacent if there is an edge directly connecting them; the two nodes are
then said to be end-points of the edge. A path consists of a sequence of adjacent
nodes; the first and last nodes of the sequence are the end-points of the path. The
remaining nodes (if any) are said to be intermediate nodes of the path. The path
between two nodes which has fewest edges is known as a geodesic for those nodes.
The number of edges which it contains is the distance between the nodes. The length

216 7 Naming, Addressing and Routing

of the longest geodesic between any two nodes in a network is known as the diam-
eter of the network. For example in the network of Figure 7.13, the distance from
L to C is 3 (the geodesic is the path LKEC), and the diameter of the network is 4
(a geodesic from I to B). In what follows we shall alternate somewhat between this
graph-theoretical notation and the notation of communication systems.

Routing is interesting because it illustrates almost all the techniques and strategic
choices which can be made in a distributed system. Routing algorithms can be:

• Adaptive, in which case the routes chosen are adapted to reflect changes in
traffic patterns or net topology, or

• Non-adaptive, in which case the routes chosen are not affected by changes in
traffic or topology.

Furthermore, the adaptive algorithms can adapt the routes in a manner which is:

• Centralised, in which case a central system is responsible for telling the others
which routes to use,

• Isolated, in which case each system decides on the basis of locally available
information which routes to use,

• Truly Distributed, in which case the systems explicitly exchange information
with the aim of agreeing on a globally optimal set of routes.

These methods will be illustrated in the following sections.

7.3.1 Flooding

The simplest non-adaptive routing algorithm which can be imagined is to try out all
conceivable routes which might lead toward the destination. In other words, in each
system to send a copy of the PDU out to all adjacent systems, except the system
from which the PDU arrived. This is usually known as flooding. Obviously, the final
destination will (under normal circumstances) receive many copies of each message,
via different routes, and must throw away redundant duplicates. Also, some mecha-
nism is required to terminate the continued generation of more and more copies of
the PDU, as the already generated copies pass through the network. The simplest
technique is to include a hop counter in each PDU, and to initialise this counter
to the maximum number of edges of the network along which the PDU (and all
copies derived from it) is allowed to pass. Every time a PDU (in several copies!) is
transmitted from a system, its counter is decreased by one. If a PDU arrives with
counter value zero, it is discarded without being sent on. If the initial sender knows
the graph-theoretical distance to the final destination, then it can use this value to
initialise the hop counter. Otherwise the diameter of the network can be used. The
protocol is shown in Figure 7.14.

For example, in the network of Figure 7.13, the routes with not more than 6
hops from F to G shown in Figure 7.15 would be discovered by flooding. Since the
network has diameter 4, a strategy which discarded PDUs after 4 hops would in this
case remove all the routes with loops and leave five useful alternatives.

7.3 Routing 217

Protocol 27

Node[i : N0]
def=(SAPA[i]?(dst : N0,x : M)→∐

j∈ns(i) link[j]!(i,dst,hops(i,dst),x)→ Node[i]
[]link[k ∈ ns(i)]?(src : N0,dst : N0,h : N0,x : M)→

(if dst = i
then SAPA[i]!x→ Node[i]
elseif (src = i)∨ (h = 0)
then Node[i]
else

∐
j∈ns(i)−{k} link[j]!(src,dst,h−1,x)→ Node[i]))

Fig. 7.14 Flooding. In the protocol, ns(i) is the set of indices for channels leading to the neighbours
of node i, and hops(i, j) is the number of hops from node i to node j.

No. of hops
2 FBG
3 FHLG FKLG
4 FKHLG FHKLG
5 FDCABG FDJKLG FKHFBG* FHKFBG*
6 FKECABG FDCEKLG FDJKHLG FHKFHLG*

FKHFKLG* FKJDFBG* FDJKFBG*

Fig. 7.15 Routes from F to G with not more than 6 hops. The routes marked with an asterisk
contain loops.

Although apparently a primitive method, flooding has a number of areas of use.
One area in which it is popular is in military networks, where the individual systems
may disappear from one minute to the next. The robustness of flooding to loss of
nodes or edges in the network is plainly an advantage here. It must also be noted
that flooding is certain to find the shortest and the quickest route(s) between any two
systems, since it simply tries all routes in parallel! This can be an advantage if the
quickest route has to be guaranteed, and is exploited in the exploratory phase of the
so-called source routing described in Section 7.3.7 below.

7.3.2 Static Routing

In static routing (or directory routing), each system makes use of a routing table with
an entry for each other system in the network. In system i, the entry for system j
specifies one or more nodes adjacent to i, to which i will send traffic whose ultimate
destination is j.

If more than one node is specified, there is some fixed rule for choosing between
them. This may be based on some classification of the PDU to be sent, such as its
length (since some routes may be able to carry longer PDUs than others), security
requirements, urgency or the like – the kind of properties usually referred to as the
Quality of Service (QOS) of the network. If there is no such basis for making the

218 7 Naming, Addressing and Routing

choice, or if several routes offer the same quality of service, then the rule may sim-
ply be to have a pre-determined probability for choosing each particular one. The
probabilities can be chosen, for example, to minimise the average time for trans-
mission between arbitrary pairs of nodes in the network. This time is a function of
the load applied to each communication link between adjacent systems (which of
course is related to the probability of choosing a particular link) and to the capacity
of these links.

A common approximation is to evaluate this time using a simple queueing net-
work model, assuming M/M/1 queues for transmission on each link. For a network
with m links and n systems, this leads to the formula:

T = (1/γ)
m

∑
k=1

λk

µCk−λk

where

λ =
m

∑
k=1

λk

γ =
n

∑
i=1

n

∑
j=1

γi j

and where λk is the mean rate (PDUs per unit time) at which PDUs are generated
for transmission along link k, γi j is the mean number of PDUs per unit time to be
sent from system i to system j, Ck is the capacity of link k in bits/unit time, and 1/µ
is the mean PDU size in bits. A Poisson process for the generation of PDUs and an
exponential distribution of PDU sizes is assumed here.

Evidently the capacities of the links, Ck, are pre-determined. If the traffic pattern,
γi j, is reasonably constant, then T can be minimised once and for all by adjustment
of λk, the rate at which traffic is offered to the individual links. The ratio of the
values of λk for the various links starting in a given system can then be used to de-
termine the probability with which these links should be chosen. Note that all these
calculations are performed when the network is set up, and are not dynamically ad-
justed to suit the actual traffic while the network is running; the routing algorithm is
completely static. The method is obviously best suited to networks whose topology
and traffic do not change much with time. Its particular advantage is that, once the
table has been worked out, the algorithm used in each system is extremely simple.

7.3.3 Tree Routing

If the network has a tree-like topology, there is only one route from any node to
any other node. Thus it is unnecessary to consider alternative routes, and adaptive
routing is not an issue. In each node, the edge to be used in order to follow a path
to the final destination is fixed by the topology. If the addressing structure used in
the network is flat or hierarchical, then static tables can be used, as described in the

7.3 Routing 219

�
100

�
110

�
120

�
130

�

111

�

112

�

113

�

114

�

121

�

122

�

131

�

132

�

133

�

134

�

135

$$$$$$$$$$$

%%%%%%%%%%%
&

&
&

&&

'
'
'
''

(
(
(
((

)
)

)
))

�
�

�
��

�
�
�
��

�
�

�
��

�
�

�
��

�
�
�
��

�
�

�
��

Fig. 7.16 Partitioned Addressing in a Tree Network.

previous section. However, if the addressing structure is partitioned to reflect the
tree structure, then routing can be performed without the use of tables at all. For a
tree with depth N, the address for a node will consist of an N-tuple, where the first
element specifies which sub-tree at the root level the node belongs to, the second
element specifies which sub-tree of this sub-tree the node belongs to, and so on. A
simple example is seen in Figure 7.16.

In a network of this type, the route to be chosen at a node at depth i is determined
by comparison of the i-prefix (the first i elements) of the address of that node with
the i-prefix of the destination address. If these prefixes are different, the PDU is
sent up the tree (to level i− 1). If they are the same, the PDU is either kept (if the
whole address already matches) or sent down the tree to the node whose (i + 1)-
prefix matches. If there is no such node, the address is in error, and the PDU can be
discarded.

Although we have described this algorithm in terms of a tree of simple nodes,
it can also be applied with small modifications even when the nodes of the tree are
themselves networks – or, more correctly sub-networks, as illustrated in Figure 7.4.
A network made up of sub-networks joined together in a tree-like structure is often
known as a hierarchical network.

7.3.4 Centralised Adaptive Routing

In a network with a general topology, in which there are alternative routes between
pairs of nodes, static routing techniques do not give optimal results if the traffic pat-
tern begins to differ significantly from the pattern assumed when the routing tables
were set up. Some links may become more or less unused, while others become
overloaded. This will lead to long delays for transmission to certain destinations,
or even to complete lack of the necessary buffer resources for containing the PDUs
which are to be sent off. These phenomena are generally known as congestion, a
subject which we shall look at in more detail later in this chapter.

220 7 Naming, Addressing and Routing

Protocol 28

RCC def= (C[de f ault : (N∗0)
∗] ‖ Timer[0])\{up[0]}

C[gtab : (N∗0)
∗] def= (up[0]!SET →C1[gtab, []])

C1[gtab : (N∗0)
∗,new : In f o∗]

def= (link[k ∈ ns(0)]?(src : N0, in f : In f o)→C1[gtab,neŵin f]
[]up[0]?t : {TIMEOUT}→C2[evaluate(gtab,new), lengtab−1])

C2[gtab : (N∗0)
∗,n : N0]

def= (if n = 0
then C[gtab]
else link[gtab(0)(n)]!(n,gtab(n))→C2[gtab,n−1])

P[i : N0,rtab : N
∗
0]

def= (P1[i : N0,rde f : N
∗
0] ‖ Timer[i])\{up[i]}

P1[i : N0,rtab : N
∗
0]

def= (up[i]!SET → P2[i,rtab])
P2[i : N0,rtab : N

∗
0]

def= (link[k ∈ ns(i)]?(dst : N0,rtab′ : N
∗
0)→

(if dst = i
then P2[i,rtab′]
else link[rtab(dst)]!(dst,rtab′)→ P2[i,rtab])

[]link[k ∈ ns(i)]?(src : N0, in f : In f o)→
link[rtab(0)]!(src, in f)→ P2[i,rtab]

[]up[i]?t : {TIMEOUT}→ link[rtab(0)]!(i,getin f o())→ P1[i,rtab])

Timer[i : N0]
def= (up[i]?s : {SET}→ (up[i]?r : {RESET}→ Timer[i]

[]up[i]!TIMEOUT→ Timer[i]))

Fig. 7.17 Distribution of routing tables from a control center

As long as the capacity of the network is not actually exceeded by the amount
of traffic generated, delays can usually be reduced (or avoided) by using a better
routing algorithm, which adapts to changing traffic patterns, and chooses routes
which avoid heavily loaded parts of the net as much as possible. If the adaptation
is sufficiently dynamic, both short term bursts of traffic and longer term changes in
the traffic pattern can be taken care of.

One of the first forms of adaptive routing to be developed was centralised adap-
tive routing. Here, one system takes on the rôle of Routing Control Centre (RCC).
From time to time, each other system sends the RCC information about observed
delays, the lengths of its internal queues for transmission along particular links, bro-
ken links and so on. The RCC uses this information to calculate new routing tables,
which are sent out to the individual systems. These routing tables contain the same
type of information as with static routing – but of course they are not static.

The protocol for distributing the routing tables is given as Protocol 28 in
Figure 7.17. In the figure, the control center is described by the process RCC and
the i’th system (i > 0) by P[i,rtab], where rtab is the local routing table. gtab is the
global set of routing tables in the RCC. Its j’th element, gtab(j), is a routing table
for the j’th system (where system 0 is the RCC itself), and evaluate(gtab,new) eval-
uates a new set of routing tables from the previous set together with the information
new received from the other systems. In the i’th system, new settings from the RCC

7.3 Routing 221

are received from time to time, and relevant local information for transmission to
the RCC is extracted by the function getin f o() every time the local timer (Timer[i])
runs out. As in Protocol 27, ns(i) is the set of indices for the channels leading to the
neighbours of system i.

The particular advantage of this method is that the RCC accumulates global
knowledge and therefore in principle makes a globally optimal decision. Unfor-
tunately, there are a number of disadvantages:

• It takes time for the information about the individual systems to reach the RCC,
time to calculate the new routing tables (a distinctly non-trivial optimisation cal-
culation), and time to distribute the new routing tables again. Thus the modified
route has been evaluated on the basis of information accumulated a ‘long’ time
ago. This will often make the method unsuitable for adaptation to rapid changes
in traffic.

• When the RCC distributes new routing tables, those systems nearest the RCC get
their new tables first, perhaps quite a while before the systems furthest from the
RCC. This may lead to temporary inconsistencies in the routing strategies used
by different systems, and thus to confusion or congestion. This is particularly
a problem when drastic changes have occurred – for example if the new routing
tables have been calculated in response to a change in network topology resulting
from a total failure of a system or link.

• The algorithm does not work if the RCC fails. So either the RCC must be made
hardware redundant, or there must be some way of selecting a back-up RCC
from among the other systems, or one must accept that the network essentially
uses static routing during periods when the RCC is unable to function. Similar
considerations apply if one part of the network can become cut off from the RCC,
for example due to link or system failures.

In practice, however, centralised adaptive routing, like static routing, is very com-
mon, presumably because the effort of evaluating routes can be concentrated in a
single system, which can be specially developed for the purpose.

7.3.5 Isolated Adaptive Routing

In isolated algorithms, each system determines what to do on the basis of informa-
tion which it itself possesses, without deliberate exchange of relevant information
with other systems.

A typical simple example is the so-called hot potato algorithm, suggested by
Baran [4]. When a PDU arrives at (or is generated in) a given system, it is sent
out along the link which has the shortest queue. Sometimes this is combined with
a static routing table, in the way that the choice of outgoing link is first made on
the basis of the table. Then, if the queue for that link is too long (say, larger than
some threshold), the hot potato rule is used to choose another link instead. This type

222 7 Naming, Addressing and Routing

of combination diverts some traffic from the routes given in the table when those
routes are heavily loaded.

Another example, also due to Baran, is backward learning. This algorithm de-
rives information from PDUs arriving from a particular system, in order to deduce
what to do with traffic going to that system. Generally speaking, when this method
is used, the PDUs must contain information which makes it possible to estimate how
good or bad their route was. For example, the original sender can timestamp each
PDU, or include a hop counter which is counted up every time a PDU is passed
between adjacent systems. When a PDU from, say, system A arrives at system B via
link k (whether or not B is its final destination), then B can see how long the PDU
has been on its way, or how many systems it has been through on the way. It can
then use this information as a measure of how good link k is as a potential route
towards A. If k appears to be better than B’s current choice for traffic toward A, then
k is chosen for use until further notice.

For this method to work well, each system must continually estimate the good-
ness of all its outgoing links, so that it can see whether a particular one is better
than its current choice. Rather oddly, in the original method, the current choice was
not continually monitored once it had been chosen – its properties were assumed to
remain constant. This works fine if the problem is just that we do not know what the
best route is when we start the network: we start from some arbitrary assignment
of routes, and improve them using backward learning. However, systems then only
react to improvements and not to changes for the worse. So, if there is a risk that
some routes may get worse, then from time to time we must reinitialise the routing
tables and start backward learning again. On the whole, it is probably better to do
the job properly, even if this means more administration in each system.

An interesting type of backward learning is used in the so-called transparent
bridging routing favoured in ISO for routing between segments of a complex local
area network [198]. This is based on the idea that it is possible to move from one
segment to another at particular nodes which act as gateways or bridges. Techni-
cally, this means that they are in the MAC (Medium Access) sub-layer of the Data
Link layer of the OSI architecture, but from an abstract point of view they essentially
perform routing between sub-networks. As in backward learning, the bridges accu-
mulate information about which route to use for traffic to a system, say A, by noting
which sub-network traffic from A arrives on. However, their operation is somewhat
more refined than simple backward learning, as they assume that the only permit-
ted routes lie on a spanning tree which spans the network. This means that routes
which do not follow the branches of the spanning tree can be excluded and do not
need to be noted down. The spanning tree is determined when the network is started,
and again whenever any important topological change (such as failure of a bridge)
occurs. Essentially, this gives the signal for the start of a new learning process.

7.3 Routing 223

7.3.6 Distributed Adaptive Routing

In this class of algorithm, the systems explicitly exchange information which en-
ables them to build up a global picture of the state of the network, and thus to select
an optimal route to any other system. Once again, there are several possibilities for
what we might want to use as a measure of a good route: how long time a PDU will
take to reach the destination via that route, how many systems the PDU will have to
be handled by on the way, and so on.

Let us assume that we use time as our measure. At regular intervals, each system
will send its own estimates of the times required for PDUs to get from that system
to other systems in the network. There are two basic strategies for how to do this:

1. Distance vector routing, in which system i sends its neighbours a set of esti-
mates (a “distance vector”) of how long it will take to get to each of the systems
1,2, . . . ,N in the network.

2. Link state routing, in which system i sends to each of the systems 1,2, . . . ,N
in the network a set of estimates of how long it will take to get to each of i’s
neighbours.

Distance Vector Routing

In distance vector routing, also known as Bellman-Ford routing after its original de-
velopers, each system sends its neighbours a set of estimates of how long it will take
to get to each of the systems in the network and will correspondingly receive esti-
mates from each of its neighbours. In addition, it will itself try directly to measure
how long it takes to reach each of these neighbours; this can be done by sending
‘probes’ – PDUs which are at once returned by the receiver. Given the neighbours’
estimates of how long it takes to reach any system from them, and its own estimates
of how long it takes to reach each of the neighbours, the system finds, for each pos-
sible destination in the network, the combination which gives the quickest route.
This is illustrated in Figure 7.18, which shows an example of routing information
for system F in the network of Figure 7.13.

Here, for example, we see that system F has estimated that the times required
to send a PDU to B, D, H and K are respectively 8, 6, 10 and 4 time units. From
the information received from these neighbours, F can see for example that system
I can be reached in 41 time units from B, 26 from D, 33 from H and 27 from K.
Thus the shortest time is the minimum of (41+8), (26+6), (33+10) and (27+4), i.e.
31 time units, obtained by going via K. Traffic for I is therefore routed via K until
further notice. Although it is not necessarily the case that the algorithm produces a
globally optimum route in the first step after a change in the network, it is possible
to prove that this algorithm converges to give the best routes in any finite network
after a finite number of steps. The protocol can be extended in a simple way to make
it possible to deal with topology changes; for example, a time ‘infinity’ (represented
by a value larger than any which can occur in practice) can be sent to indicate that

224 7 Naming, Addressing and Routing

Fig. 7.18 Exchange of In-
formation in Distance Vector
Routing.

Estimates from: Estimated Route
B D H K optimum via

A 16 8 24 28 14 D
B 0 14 18 12 8 B
C 19 5 21 15 11 D
D 14 0 16 10 6 D
E 29 15 20 15 19 K
F 10 5 10 5 0 –
G 15 29 24 25 23 B
H 18 16 0 6 10 H
I 41 26 33 27 31 K
J 21 7 17 11 13 D

K 12 10 6 0 4 K
L 26 19 8 9 13 K

Local estimates of time to reach:
B D H K
8 6 10 4

a route is completely unavailable. This extension is used in the Internet RIP routing
protocol [243], amongst others.

Like backward learning, distance vector routing has the problem that it tends to
react much more slowly to degradation in the network than it does to improvements.
In unfavourable circumstances, it may even demonstrate a type of unstable behav-
iour known as “counting to infinity” after a topology change occurs. Suppose, for
example, the link AC in the network of Figure 7.19(a) breaks at time t0, giving the
network of Figure 7.19(b). If node A detects this failure, it will at time t1 deduce that
the best route to C now costs 3 time units and goes via B, whereas node B will still
believe that the best route to C goes via A and costs 2 units. They then exchange
this new information, which causes each of them to think that the best route now
costs one more unit. They then exchange this new information, which causes each
of them to think that the best route now costs yet one more unit. And so on. The
basic problem is that A and B cannot see that each of them thinks the best route
goes via the other.

Link State Routing

Problems of this type do not appear in link state routing, which has largely replaced
distance vector routing in most networks, and is the currently preferred routing al-
gorithm in the Internet. The basic algorithm is, as mentioned previously, for each
node to measure the delay to each of its neighbours, and to distribute this infor-
mation to all other systems in the network. Figure 7.20 shows an example of this
routing information in the network of Figure 7.13. Once a node has received a PDU
containing link state information from each of the other nodes, it can construct a
picture of the state of the entire network, with information about the delay involved
in passing each edge (link) in the network. It can then use any of a number of short-

7.3 Routing 225

(a) (b)

27∞
A

B

C

A
B

C

1

27
1

Time t0

Vector in A B C
C 3 1

Vector in B A C
B 2 27

t1

B C
C 3 ∞

A C
B 2 27

t2

B C
C 3 ∞

A C
B 4 27

t3

B C
C 5 ∞

A C
B 4 27

t4

B C
C 5 ∞

A C
B 6 27

Fig. 7.19 Counting-to-infinity in Distance Vector Routing

Fig. 7.20 Exchange of Infor-
mation in Link State Routing

Source Link State Information
A B 16 C 3
B A 16 F 8 G 15
C A 3 D 5 E 10
D C 5 F 6 J 7
E C 10 I 10 K 15
F B 8 D 6 H 10 K 4
G B 15 L 16
H F 10 K 6 L 8
I E 10 J 16
J D 7 I 16 K 11
K E 15 F 4 H 6 J 11 L 9
L G 16 H 8 K 9

est path algorithms to find the route giving the least delay for any given destination.
A popular choice is Dijkstra’s shortest path algorithm [32], which is described in
innumerable works on graph algorithms. The actual distribution of the link state
information from each source to all other nodes is typically done by an optimised
form of flooding, where link state PDUs which have already been seen once are not
passed on to other nodes. Link state routing is the basis of the Internet Open Shortest
Path First (OSPF) routing protocol [231]. This is currently the commonest interior
gateway routing protocol, which is the class of protocol used for routing within a
so-called Autonomous System (AS), i.e. a portion of the Internet administered by a
single organisation. Routing between ASs is generally done by the Border Gateway
Protocol (BGP), which is a distance vector protocol [251].

226 7 Naming, Addressing and Routing

7.3.7 Exploratory Routing

A final variation, which lies somewhere between an isolated and a distributed tech-
nique, is exploratory routing, as proposed by Pitt, Sy and Donnan [107] for use in
connection with so-called source routing. In source routing, each system is respon-
sible for maintaining its own information about the complete route to be followed
in order to reach any other system, and the intermediate systems through which a
PDU passes just follow the routing instructions given by the originating system.

Exploratory routing is a technique for making this possible: When a PDU is to
be sent to a system for which the route is not yet known, a route discovery PDU is
sent out first for exploratory purposes. As discussed by Pitt et al., there are several
possible strategies for handling this PDU, but we will only consider one of them.
Here, the discovery-PDU is routed by flooding, so copies of it will reach its destina-
tion by (in principle) all possible routes, or at any rate all the shortest ones. When a
copy of the outgoing discovery-PDU is passed from one system to another, the ad-
dresses of the systems which it passes are recorded in the PDU. Thus when the final
destination receives a copy of a discovery-PDU, it can see which route this copy has
followed. For example, returning again to Figure 7.13, destination G would receive
copies of the discovery-PDU with recorded routes:

FBG, FHLG, FKLG, FKHLG, FHKLG

for an exploratory phase started from node F, using flooding with a distance limit
of 4 hops, as shown in Figure 7.15. The destination then returns each copy to the
sender. A discovery-PDU on its way back to the original sender is routed back along
the route which it followed on the outgoing trip, by making use of the route recorded
in the PDU.

This procedure results in the originator receiving a number of copies of the
discovery-PDU back from the destination, each of them containing infomation about
the route followed. By some appropriate criterion – time taken, number of interme-
diate systems, maximum permitted PDU size, or whatever – the originator then
chooses the ‘best’ route, and this is used for the subsequent data-PDUs to be sent
to this destination. When exploratory routing is used to support source routing, the
data-PDU carries a description of the entire route as well as the address of the des-
tination, and it is this description, rather than the destination address, which is used
to guide the PDU through the network.

The protocol is given in Figure 7.21. In the figure, the discovery-PDUs are headed
by the keyword DISCOVER, the replies by ROUTE and the data-PDUs by DATA. In
the version of the protocol shown in the figure, the original sender (process Syst)
sends out a discovery-PDU when it needs to send data to a destination for which
it does not currently know the route. The discovery-PDU is distributed by flood-
ing, and the replies are collected up (process Pend) until a timer runs out. Replies
arriving after the timer runs out are ignored. The function best(replies) is used to
evaluate the best of the replies according to the desired criterion, and the selected
route is inserted in the sender’s routing table, denoted routes, by the function ad just.

7.3 Routing 227

Protocol 29

Node[i : N0,routes : (N∗0)
∗]

def=(Syst[i,routes] ‖ Timer)\{up}
Syst[i : N0,routes : (N∗0)

∗]
def=(SAPA?(dst : N0,x : M)→

(if routes(dst) = []
then

∐
j∈ns(i) link[j]!(DISCOVER, i,dst,hops(i,dst), [j])→

up!SET → Pend[i,routes,dst,x, []]
else Send[i,routes,dst,x])

[]link[k ∈ ns(i)]?(d : {DISCOVER},src : N0,dst : N0,h : N0,sl : N
∗
0)→

(if dst = i
then link[k]!(ROUTE,src,dst,1, [k]̂sl)→ Syst[i,routes]
elseif (src = i)∨ (h = 0)
then Syst[i,routes]
else

∐
j∈ns(i)−{k} link[j]!(DISCOVER,src,dst,h−1, [j]̂sl)→ Syst[i,routes])

[]link[k ∈ ns(i)]?(r : {ROUTE},src : N0,dst : N0,h : N0,sl : N
∗
0)→

(if src = i
then Syst[i,routes]
else link[sl(h+1)]!(ROUTE,src,dst,h+1,sl)→ Syst[i,routes])

[]link[k ∈ ns(i)]?(r : {DATA},src : N0,dst : N0,sl : N
∗
0,x : M)→

(if dst = i
then SAPA!(src,x)→ Syst[i,routes]
else Send[r,src,dst,sl,x]))

Pend[i : N0,routes : (N∗0)
∗,dst : N0,x : M ,replies : (N∗0)

∗]
def=(link[k ∈ ns(i)]?(d : {DISCOVER},src : N0,dst : N0,h : N0,sl : N

∗
0)→

(if dst = i
then link[k]!(ROUTE,src,dst,1, [k]̂sl)→ Pend[i,routes,dst,x,replies]
elseif (src = i)∨ (h = 0)
then Pend[i,routes,dst,x,replies]
else

∐
j∈ns(i)−{k} link[j]!(DISCOVER,src,dst,h−1, [j]̂sl)→

Pend[i,routes,dst,x,replies])
[]link[k ∈ ns(i)]?(r : {ROUTE},src : N0,dst : N0,h : N0,sl : N

∗
0)→

(if src = i
then Pend[i,routes,dst,x,replieŝ(h,sl)]
else link[sl(h+1)]!(ROUTE,src,dst,h+1,sl)→

Pend[i,routes,dst,x,replies])
[]link[k ∈ ns(i)]?(r : {DATA},src : N0,dst : N0,sl : N

∗
0,x : M)→

(if dst = i
then SAPA!(src,x)→ Pend[i,routes,dst,x,replies]
else Send[src,dst,sl,x]))

[]up?{TIMEOUT}→ Send[i,ad just(routes,best(replies)),dst,x])

Send[i : N0,routes : (N∗0)
∗,dst : N0,x : M]

def=(link[hdroutes(dst)]!(DATA, i,dst,tlroutes(dst),x)→ Syst[i,routes])

Fig. 7.21 Exploratory routing

228 7 Naming, Addressing and Routing

As in Protocol 28, the routing table is modelled as a sequence of sequences, whose
j’th element gives the route to destination system j.

An obvious advantage of this routing protocol is that intermediate systems can be
made simpler, as they do not have to maintain routing tables. In fact it is sometimes
presented as a method for table-free routing. This is, however, not strictly the case,
since the burden of maintaining the tables is merely transferred to the originating
systems. Another potential advantage follows from the use of flooding in the ex-
ploratory phase: all the best routes are discovered, and each originating system can
then use any appropriate criteria for choosing among them. The disadvantage is that
flooding is expensive, and has to be performed every time that an originator wants
to send to a new destination.

In source routing as described by Pitt et al., the discovered route is used until
further notice, or until the originator finds out that PDUs sent via this route are not
getting through to the destination. In fact, in Pitt et al.’s proposal this method, like
the transparent bridging method discussed previously, is intended for use for routing
between sub-networks, such as interconnected segments of a complex local area
network (LAN); in particular, the method is used for routing in networks made up
from multiple token rings [199]. Here the routing problem is one of finding which
gateway or bridge between two sub-networks to pass through. Failure of such a
gateway or bridge can be expected to be detected fairly quickly. If this happens, a
new exploratory phase is set going to find a new route.

Another area in which exploratory routing is popular is in so-called Mobile Ad
Hoc Networks (MANETs). In a MANET, a collection of mobile nodes communicate
via a temporary (and often dynamically changing) wireless network without any
centralised administration. Each wireless transmitter has a finite range, and as the
transmitting nodes move round in the mobile network, nodes which previously have
been able to communicate with one another become unable to do so, so a new route
has to be found. This is illustrated in Figure 7.22. The dashed circles round some of
the nodes in the figure indicate the ranges of the nodes’ transmitters.

A

D

E

C

B

F

G

A
B

D

E

C

G

H
H

F

(a) (b)

Fig. 7.22 Routing in a MANET.
(a) Initially, a route from A to E via B, C, and D is in use.
(b) After B, G and H move, a new route from A to E is needed, as B is no longer within range of
A. The new route goes via F and G.

7.4 Congestion 229

In this situation, exploratory routing offers obvious advantages over more sta-
tic, table-based algorithms. Typical examples are the Dynamic Source Routing
(DSR) [71] and Ad Hoc On-Demand Distance Vector (AODV) [249] routing pro-
tocols. Both of these use optimised forms of flooding for route discovery, in order
to reduce overhead. For example, in DSR an intermediate node will only pass on a
discovery-PDU for a given source and destination if it has not recently handled a
discovery-PDU for the same source and destination, while in AODV an intermedi-
ate node which already knows a route to the final destination will not pass on the
discovery-PDU, but just return the route which it knows. Once a route has been
discovered, DSR attempts to check whether it continues to be valid by checking
whether each message is passed on by the next system along the route (this is easy
in a wireless network, as the transmission can be overheard); if this does not occur,
a new exploratory phase is set going. AODV uses a more active policy in which
each node sends out Hullo messages at suitable intervals to each destination which
it knows about; a new exploratory phase is set going if no reply is received.

7.4 Congestion

A problem closely connected with routing is the avoidance of congestion in a net-
work. In fact, as mentioned above, congestion can be notably reduced by good rout-
ing, since traffic can often be routed to avoid heavily loaded parts of the network.
Unfortunately, however, routing is not a universal cure for congestion, which may
also arise because more traffic is generated (in certain parts of the network in certain
periods) than the network can bear.

Congestion control, like routing, requires global decisions if it is to be effective –
otherwise the congested area just moves off to another part of the network. But,
as with routing, it may be possible to produce a good approximation to a global
solution without any system using more than its own local knowledge.

The general symptoms of congestion are poor throughput, extended delivery
times and possibly complete failure to deliver PDUs. Typical behaviour with in-
creasing network load is illustrated in Figure 7.23. Up to the knee, throughput ap-
proximately follows the ideal curve (dashed), asymptotically approaching the limit
of the network capacity, while the delay remains more or less constant. Over a range
of loads between the knee and the cliff, the throughput stagnates and delays increase
markedly. Finally, if load increases beyond the cliff, a so-called congestion collapse
may occur, with a dramatic drop in throughput and increase in delays.

The symptoms of congestion arise when the total demands made on network re-
sources, such as buffers, link capacities and processor capacities, exceed the quan-
tities of these resources actually available. Two radically different approaches to
dealing with congestion are therefore:

• Resource creation: create more of the resources which are in short supply.
• Demand reduction: reduce the demand to match the currently available level of

resources.

230 7 Naming, Addressing and Routing

Fig. 7.23 Schematic network
behaviour with increasing
load.

Load

Load

Throughput

Delay

K
ne

e

C
lif

f

Most interest has been focussed on demand reduction techniques. These fall into
two groups:

• Service denial, where new connections cannot be established unless there are
resources for them. This is the preferred technique in many telecommunications
systems, such as the ordinary telephone system.

• Service degradation, where some or all systems are required to reduce the traffic
load which they generate, or to re-schedule it so that the overall demands never
exceed the available resource capacity in the network.

Service denial schemes are commonly associated with pre-allocation of re-
sources in the source, destination and intermediate systems (if any) when a con-
nection is set up. For example, a suitable amount of bandwidth needs to be reserved
on all links on the chosen route, and suitable numbers of buffers need to be allocated
to store the passing PDUs. In particular, it is necessary to allocate, for the lifetime
of the connection, Ws buffers in the sending system and Wr buffers in the receiving
system, where Ws and Wr are the send and receive window sizes agreed when the
connection is set up. Since the resources need to remain allocated until the connec-
tion is broken, regardless of whether they are utilised, this approach can be very
expensive in terms of buffer space. From the very nature of things, it is unsuitable
for use in connectionless-mode operation.

Service degradation schemes are characterised by the techniques which they use
for reducing traffic as congestion approaches. It is important to realise that this is
a problem in control engineering, which requires an appropriate response (traffic
reduction) to an indication of congestion. Jain [69] has pointed out that there are
two slightly different ways of going about this, depending on whether the aim is
to maintain the load at a level round the “knee” or just below the “cliff” of the
throughput/load curve, as illustrated in Figure 7.23. These are sometimes denoted

7.4 Congestion 231

congestion avoidance and congestion control respectively. We shall here consider
four commonly used techniques for dealing with congestion, which use increasingly
direct forms of feedback from the network to achieve their aim:

1. Discarding of PDUs.
2. Limiting the number of PDUs in transit at any time.
3. Timeout-based congestion control.
4. Explicit feedback.

In certain systems, attempts are made to use ordinary flow control as a form
of congestion control. A well-known example is the ARPANET. However, this is
unsatisfactory, as flow control aims to prevent a receiver being overrun by traffic
generated by a specific sender, and not to limit the total amount of traffic between
all possible sender-receiver pairs. In a congested network, it is highly possible that
the receiver never actually receives any data at all. We shall therefore not consider
this method in more detail here.

7.4.1 Discarding

A simple but effective form of congestion control based on an isolated algorithm
is simply to discard any PDUs for which no buffers are available. This causes the
reliability of the service to drop, in the sense that PDUs are lost and will at some
stage probably have to be retransmitted. However, it may enable other aspects of the
overall quality of service – such as throughput – to be maintained, since congestion
no longer has a disturbing effect.

Arbitrary discarding of PDUs may be counter-productive: discarding an ac-
knowledgment, for example, may mean that we lose the opportunity to release one
or more buffers containing data-PDUs which we have transmitted. So in practice
some buffers are always kept available so that incoming PDUs can be inspected. Ir-
land [67] investigated a number of policies for how to allocate the remaining buffers,
which can be used for outgoing traffic. Supposing that ti buffers are made available
for the queue of PDUs waiting for link i, then PDUs to be transmitted by that link
will be discarded when the length of the queue exceeds the threshold ti. Irland used
a Markov model to analyse how ti should be related to the total number of buffers,
n, available for all links. The optimum is a complex function of the traffic. However,
Irland discovered that a close approximation to the optimum could often be achieved
by using the same value of ti, say t̂, for all links, independent of the traffic pattern.
This is often called a restricted buffer sharing policy, as the pool of buffers is shared
evenly among the links. Intuitively, it gives a good result because it ensures that the
busiest links do not hog all the buffers, as they would tend to do in an unrestricted
(demand controlled) buffer sharing policy. Irland found that the best value for t̂ was
given by a simple rule, which he called the Square Root rule: If there are g outgoing
links from the system, then a good value of t̂ is approximately n/

√
g.

232 7 Naming, Addressing and Routing

7.4.2 Limiting the Number of PDUs

Davies [29] proposed a more distributed method for congestion control than simple
discarding. His method is explicitly to limit the number of PDUs which can be in
transit at any one time. This is known as isarithmic control4. The mechanism is to
use a set of tokens which circulate within the network. When a system wishes to
generate a PDU, it must first capture a token. When the PDU arrives at its ultimate
destination, the receiving system regenerates the token. This ensures that the global
strategy of limiting the number of PDUs is realised. However, there may still be local
congestion, which this typically distributed form for control can do little about.

This method also presents the interesting problem of how to ensure a distribution
of tokens which offers systems a fair service. In a net with arbitrary topology there
is no simple distributed algorithm for ensuring this, but a possible way out is to use a
centralised token distributor, which sends tokens towards each system in turn. Alter-
natively, a ‘logical ring’ can be defined covering all the nodes in the network, such
that tokens are passed round from one system to another in some pre-determined
order.

An even more delicate problem is what to do if tokens can get lost. Firstly, we
need a method for counting the number of existing tokens (strictly, free tokens +
PDUs in transit), and secondly we need a mechanism for generating new tokens
to replace the lost ones. Counting the tokens is not a trivial task if the network is
actually working, as tokens are continually being passed round from one system to
another. One possibility is simply to ‘freeze’ the network from time to time while
the audit takes place, but this is not always acceptable. This is obviously a situation
where Chandy and Lamport’s snapshot algorithm [22] for dynamically determining
the global state of a distributed system (see Section 5.6) would be appropriate. The
auditing algorithm must be initiated by some supervisory system from time to time,
and the same supervisory system would typically also be responsible for generating
replacement tokens when needed.

7.4.3 Timeout-based control

Timeout-based techniques are based on the assumption that timeouts indicate PDU
loss or excessive delays and are therefore good indicators of congestion. If a sender
experiences a timeout, the send window size Ws should be reduced; after a period
with no timeouts, the window can gradually be opened again. An analysis by Chiu
and Jain [25] demonstrates that the choice of additive or multiplicative rules for the
increase and decrease algorithms has a marked effect on the stability and fairness of
the service provided by the network. To ensure a stable and fair result, the window
size should be decreased by a multiplicative factor and increased by an additive term
up to some suitable limit:

4 From the Greek: ισoς : equal, αριθ µoς : number.

7.4 Congestion 233

On congestion: W (i)
s = W (i−1)

s ·d
No congestion: W (i)

s = max(W (i−1)
s +u,Wmax)

where W (k)
s is the k’th estimate of the send window size, and 0 < d < 1. This ap-

proach is used in most modern implementations of TCP, the ISO Class 4 Transport
Protocol (ISO TP4) and other similar connection-mode Transport Layer protocols.

The TCP scheme is in fact slightly more complicated, since it also incorporates
a mechanism to ensure that a stable state is achieved without oscillating behaviour
due to a sudden influx of PDUs when a connection is first opened or is recovering
from congestion. This mechanism, due to Van Jacobsen [68], is known as slow-
start, and makes use of a congestion window, of size say Wc, for each transmission
direction in each connection. When the connection is opened, Wc = 1. After each
acknowledgment from the receiver, the size of the sender’s congestion window is
increased by 1. The size of the sender’s send window is:

Ws = min(Wc,W ′
r)

where W ′
r is the size of the receiver’s receive window, as announced by the receiver.

The effect of slow-start is to ensure that the system gradually approaches a state
where it is self-clocking, in the sense that the sender sends a PDU only when it
receives an acknowledgment for some previous PDU. This means that the inter-
PDU interval exactly matches the time required to send a PDU on the slowest link
in the path between sender and receiver. Sending at a faster rate would clearly lead
to congestion on the link concerned. This is illustrated in Figure 7.24, which shows
the behaviour of a new connection with and without slow-start. With slow-start,
the throughput asymptotically approaches the available bandwidth after a delay (the
‘slow start’). Without slow-start, there are many retransmissions, and the effective
throughput is reduced to about a third of the available bandwidth.

To combine this mechanism with the congestion avoidance algorithm, slow-start
is used after a timeout until the send window has reached half its value before the
timeout. Essentially, this gives a congestion avoidance algorithm where d = 0.5,
with a ‘pre-phase’ consisting of the slow-start. Once the send window has reached
half its original size, subsequent acknowledgments trigger the ordinary congestion
avoidance scheme, which in TCP causes Wc to be increased by 1/Wc, and where
Ws is related to Wc and W ′

r as above. The choice of 1/Wc as the increment means
that the send window in fact increases by at most one for each round-trip time from
sender to receiver and back, thus ensuring that the system remains self-clocked.

Systems which use timeout-based mechanisms to counteract congestion need to
rely on good values of the round trip time, R, in order to choose an appropriate time-
out setting. It is not a trivial task to obtain a good estimate of R, since measurements
of R are subject to statistical variation. The technique used in TCP is to evaluate
the i’th estimate, R(i), from the (i− 1)’th estimate and the i’th sample, M(i), of the
round trip time (i.e. the time from a PDU is transmitted until it is acknowledged)
according to the formula:

234 7 Naming, Addressing and Routing

2 4 6 8 10

Time (sec.)

40

20

60

100

140

80

120

160

Sequence number

Fig. 7.24 Behaviour of a TCP connection (after [68]).
The dotted line corresponds to the available bandwidth through the network. The dashed curve
shows the behaviour with slow-start, and the full curve the behaviour without slow-start.

R(i) = (1−g) ·R(i−1) +g ·M(i)

Here g is a gain factor (0 < g < 1) which is determined from the variance in the
samples, so that a large variance results in a small value of g. Since a communica-
tions network is a linear system, R converges to the true average exponentially with
time constant 1/g. The retransmission timer value is evaluated from the latest value
of R as:

Tr = min(Tmax, max(Tmin,β ·R))

where Tmax,Tmin are upper and lower bounds for the timeout value and β is a delay
variance factor in the region of 2.

Since poor estimates of the timeout setting give rise to excessive retransmissions,
which in turn may cause more congestion and further delays, the retransmission
timeout timer value is doubled after each unsuccessful retransmission. As in the
case of the CSMA/CD protocol described by Protocol 11, this mechanism, known
as Binary Exponential Backoff ensures stability in the system. After a successful
retransmission, the normal way of evaluating the round trip time – and thus the
timer value – is recontinued.

7.4 Congestion 235

A

X

B
Y

Fig. 7.25 Congestion control using choking.
System X has detected excessive utilisation of the link from X to Y. Traffic from A to B is to be
routed via this link. On receiving a PDU which is on its way from A to B, X will send a choke
packet (arrows) back to A to tell it to reduce the traffic from A to B.

7.4.4 Explicit feedback

The final group of techniques which we shall consider make use of explicit informa-
tion from the network in order to reduce load. These techniques are essentially all
variants of the choking protocol proposed by Majithia et al. [85] in the 1970’s. Chok-
ing is a method for congestion limiting, in which the decision to react to congestion
is taken locally, but results in control PDUs being sent round in the network carry-
ing orders to reduce the flow. Essentially, each system monitors the utilisation of its
outgoing links. The measure of utilisation can be the number of PDUs transmitted
per unit time, the queue length or whatever is convenient. Whenever the utilisation
rises above a certain threshold, the link is noted as being in a warning state. If a
PDU arrives which should be sent on via a link in a warning state, a control PDU,
known as a choke packet, is sent back to the original sender of the PDU, informing it
of the PDU’s destination, as illustrated in Figure 7.25. This sender must then reduce
the traffic for that destination by an agreed percentage for a certain period. If further
choke packets arrive after this period is over, the generated traffic is reduced even
further. If no further choke packets arrive within a further period of time, the traffic
may be increased again. As in the case of timeout-based control (which is based on
implicit information from the network), a multiplicative decrease and an additive
increase in the traffic is necessary in order to achieve a stable, fair result.

This method is interesting because it uses a form for distributed control based on
an isolated decision algorithm. It also attacks the congestion problem at its root –
where the excess traffic is generated. The idea is such an attractive one that it is
perhaps not surprising that it has turned up in several other contexts since Majithia

236 7 Naming, Addressing and Routing

et al.’s original paper was published. The basic idea of choking packets is included
in the Internet Control Message Protocol (ICMP) [211] for managing IP, where they
are known as Source Quench messages. Two more modern examples are:

Rate-based Flow Control in ATM: Modern telecommunication networks based
on the ATM protocol use a number of congestion control algorithms, all essen-
tially based on variants of Majithia’s scheme. In an ATM network, PDUs known
as cells pass through one or more switches on their way from a source to a des-
tination. The basic scheme is to set an Explicit Flow Control Indication (EFCI)
marker in data cells as they pass through a switch in which congestion is de-
tected. In contrast to Majithia’s original scheme, however, it is the final desti-
nation which sends information back to the source (in a Resource Management
(RM) cell) if a data cell is received with the EFCI marker set. The different algo-
rithms differ with respect to whether RM cells are also sent from source to des-
tination, how much information is passed in the forward- and backward-going
RM cells, and how the source of the data adjusts in response to the informa-
tion received, in order to achieve a stable flow which is a fair share of the total
flow [70].

Explicit Congestion Notification (ECN) in TCP/IP: ECN is a variant of Ma-
jithia’s scheme proposed for use in networks which use the TCP/IP protocol
suite [109]. This is slightly more complicated than Majithia’s scheme, because
two protocol layers are involved: The Transport Layer, using the TCP protocol,
and the underlying Network Layer, using IP, so that TCP PDUs are embedded
within IP PDUs for transmission. If ECN is not in use, and congestion is detected
at an intermediate IP system (an IP router), the IP PDU and the TCP PDU (or
PDUs) which it contains are just discarded. If ECN is in use5, the corresponding
IP PDUs are marked with an ECN Capable Transport (ECT) marker. If conges-
tion is detected at an intermediate system, IP PDUs with an ECT marker are not
discarded unless the congestion is very severe. Instead, they are just marked with
a Congestion Experienced (CE) marker. The ultimate destination for the TCP
PDU received in an IP PDU with a CE marker must then inform the originator
of the TCP PDU that a reduction of traffic is required. It does this by marking
all TCP acnowledgments with an ECN echo (ECNE) marker, until the originator
sends a TCP PDU with its Congestion Window Reduced (CWR) marker set. This
is illustrated in Figure 7.26.

7.4.5 Deadlock

A spectacular form of congestion in networks is deadlock, where two or more sys-
tems are unable to forward messages to one another at all. The most usual reason
for this is that each of the systems involved is waiting for a buffer to become free in

5 This may be the case for all traffic, or just for selected TCP flows between particular pairs of end
systems.

7.4 Congestion 237

Source Destination

Router

ECT CE

ECT

ECT CE

ECNE

ECTCWR CE

ECT

ECTECNE

ECT

Fig. 7.26 TCP/IP congestion control with ECN.
ECN capable IP PDUs are not discarded if a router through which they pass detects congestion,
but they are marked with a CE marker. The receiver of a TCP PDU (shaded) which arrives in a
CE-marked IP PDU will mark its acknowledgments with ECN-echo until the source of the TCP
PDUs sends one marked CWR to show that it has reduced its rate of transmission.

one of the others, in a cyclic manner: A waits for B, which waits for C, which waits
for A, or the like. This is known as store-and-forward deadlock. A variant of this is
the reassembly deadlock discussed in Section 4.6.

Any technique which reduces congestion due to buffer shortage, and thus ensures
that there are always some free buffers in all systems, can prevent store-and-forward
deadlock. More specific techniques for avoiding buffer deadlocks usually rely on
some form of resource ordering: Resources are given some linear or partial ordering,
�, and a process which has acquired resources of rank r in this ordering may only
request resources of rank r. This is analogous to the well-known techniques for
deadlock avoidance in resource allocation in operating systems.

There are several popular ranking schemes for deadlock avoidance. One of the
simplest, which is generally attributed to Merlin and Schweitzer [91], is based on
counting hops performed by the messages: A messsage is placed in a buffer of rank
r (or less, if there are any such available) when it arrives at the r’th system along its
route. For this to work correctly, the routing scheme must ensure that the maximum
number of hops, nmax, used on a route between two arbitrary systems is known. It
is then fairly easy to show that if all systems have buffers of ranks 1 . . .nmax, and
if messages which arrive at their final destination are removed from their buffers
within a finite time, then unbounded waiting for buffers cannot occur as messages
are forwarded through the network. Informally, the argument is that removal of the
message at the ultimate destination, say Sn, releases a buffer of rank, say, n. This
enables a message which has gone n−1 hops to be passed on to Sn from, say, system
Sn−1, and thus releases a buffer of rank n−1 in Sn−1, which enables a message which
has gone n− 2 hops to be passed on from some other system, and so on. A more
formal proof, and a good review of this area in general, can be found in [56].

238 7 Naming, Addressing and Routing

Further reading

For a theoretical treatment of naming and addressing, the seminal article by Wat-
son [126] offers a good survey of ideas. Ideas more related to current practice can
be found in the various international standards which apply in this area, starting
with Part 3 of the OSI Reference Model [135] and the various standards on network
addressing, such as references [141] and [130]. If you are the sort who likes to get
his fingers dirty, reading about UNIXTM mailing systems gives another point of view,
both on addressing and routing. Specialised books and handbooks are available on
this topic, for example reference [50].

In this book we have not said much about how actually to calculate or estimate
quantitative parameters of a network with a view to optimising routing. An excellent
source with much useful material on routing and congestion, including quantitative
aspects, is Bertsekas and Gallagher’s book “Data Networks” [11].

The types of routing which we have concentrated on here are the ones most
used in loosely-coupled distributed systems, where the physical separation of the
component systems is ‘large’ and the topology of the network (for cost reasons)
correspondingly sparse. In tightly-coupled multiprocessor systems, where the sepa-
ration is ‘small’, more fully-connected networks are often used, and special routing
algorithms have been developed to take advantage of this. An area of particular the-
oretical and practical interest is networks with an n-dimensional binary hypercube
or Boolean cube topology, in which each system is connected to its neighbours in n
dimensions. For a historical review see for example reference [59]. Optimal routing
in hypercubes has been described by Bertsekas and his co-workers [12]. In mul-
tiprocessor systems, it is important that routing does not lead to deadlock, as the
timing requirements are generally strict and deadlock detection and recovery are
therefore impracticable. Much work has therefore gone into finding deadlock-free
algorithms, such as Dally and Seitz’ wormhole routing [28, 37].

Exercises

7.1. Confidential Connections Ltd. offers a large number of distributed services to
industry, including a so-called Secure Directory service, which on demand can give
addresses (in the OSI sense of the word) or other information about named users or
service operators. The service is secure in the sense that:

• Information may only be supplied to subscribers to the service.
• Changes in the directory may only be made by the subscriber whose information

is to be changed.

This is ensured by operating the directory service as an authenticated service with
digital signatures based on a public key cryptosystem (PKCS).

Assume that the directory is to be distributed, but that there is only one copy of
the information about any particular subscriber, and that this copy may be on any

Exercises 239

system. Propose an algorithm which can be used for lookup in the directory. Your
proposal could conveniently take the form of a description of the sequence in which
things take place, from the moment when a user asks the service for information
about a subscriber until this information is supplied (or the user is told that they for
some reason are inaccessible). Specify carefully which messages are sent between
the various parts of the system, together with the content of these messages (in rough
terms!). If messages are to be encrypted, then specify who is to encrypt them, which
key is to be used and what the purpose of the encryption is.

Then describe (in a similar manner) an algorithm which can be used for changing
the information about a subscriber in the directory.

Finally, describe (in a similar manner) an algorithm for changing the information
about a subscriber, but now assuming that the directory is fully replicated.

7.2. An alternative strategy for handling source routing is to send out a discovery-
PDU via a broadcast, rather than using flooding. The address of the destination
whose route is to be found is incorporated in the discovery-PDU in a special field.
A system which receives a broadcast discovery-PDU containing its own address in
the special field replies to the originator of the discovery-PDU by using flooding.
The result of this is that the originator, as in the strategy discussed in Section 7.3.7,
receives messages from the desired system via all possible routes between the two
systems.

Give a CSP description of this version of source routing, and then compare the
strategy described here with the one described in Section 7.3.7, paying attention to
factors such as the traffic generated in the network, the traffic generated at the nodes,
and any other efficiency properties which you consider relevant.

7.3. As stated in the text, the Dynamic Source Routing (DSR) protocol often used in
MANETs uses an optimised form of flooding for route discovery. An intermediate
node will only pass on a discovery-PDU for a given source and destination if it has
not recently handled a discovery-PDU for the same source and destination. Give
a CSP description of this form of flooding. You may assume that each discovery-
PDU for a given source and destination contains a sequence number, so a “recently
handled” discovery-PDU for the same source and destination can be recognised by
looking at this number.

7.4. The Royal Library of the Kingdom of Wom, whose population are famous (at
least among computer ethnologists) for reading a lot but writing very little, has
decided to introduce the latest technology in all its branches, which are distributed
throughout the kingdom. As a result of a general IT initiative in Wom during the
1990’s, each branch has a computerised catalogue of all the books and journals
which it possesses. However, due to a lack of internal coordination in the Royal
Library, these catalogues are based on a variety of different computer systems. Even
worse, up to now it has been necessary for any citizen of Wom, who wanted to find a
book which was not in his or her local branch, personally to get in touch with other
branches where the desired work might be available. This has given rise to severe
administrative difficulties for the librarians, who by now spend most of their time
on the telephone answering questions from citizens in distant parts of the kingdom.

240 7 Naming, Addressing and Routing

The Master of the Royal Library has therefore decreed that a distributed cata-
logue is to be created on the basis of the existing branch catalogues. An army of
consultants has been hired to consider, together with the librarians and other royal
administrators, what requirements should be placed on this catalogue. Their main
conclusions are as follows:

1. The Royal Exchequer requires that the existing computerised catalogues in the
individual branches are to be preserved.

2. The Royal Environment Ministry requires that the individual branches turn off
their machines when the branch is closed.

3. The librarians agree that all updates to the catalogues, when a branch obtains a
new work or is obliged to write off an old one, are to be performed on the local
branch catalogue only.

Your task is to give a formal description of parts of this distributed catalogue system
for approval by the consultants. (Don’t worry – computer consultants in Wom all
have a modern education in computer science and can read CSP!) You should note
that the easiest way to fulfil the first requirement is to specify an interface which
the various local systems all have to use. You do not need to go into details of how
they match their local systems to this interface. To fulfil the second requirement, this
interface should allow the branches to ‘sign on’ (for example, when they open in the
mornings) and ‘sign off’ (for example, when they close in the evening) as well as
to send and receive actual queries to or from other systems. You should specify the
interface, which corresponds to the service offered by the distributed catalogue, as
a set of one or more CSP processes. You should then specify the protocol to be used
in order to provide this service, also in the form of a set of CSP processes.

7.5. Develop an implementation of a simple trader, as described in Section 7.1.2.
This must be able to register the signatures (the function names and argument and
result types) of the functions associated with a named interface, together with the
addresses of servers which offer this interface. Given a request specifying one or
more signatures, it must return the address of a server which offers an interface con-
taining functions with these signatures. It will be necessary to design representations
for signatures involving a suitable set of standard types, including both simple types
(N, Z, B, . . .) and composite types, such as arrays and lists. (Remember that it is
important that the representation makes it possible to distinguish arguments from
results.) You will also need to design suitable data structures which can be used to
store signatures, so that they can easily be matched to incoming requests.

7.6. In the Internet DNS, zone transfers are used to fetch complete name-address
mappings from other name servers. This is often considered a security risk: A mali-
cious intruder could set up a fake name server which could provide false mappings
by responding faster to requests for zone transfers than the genuine name server.
Which of the security techniques discussed in Chapter 6 would you use in order to
avoid this problem?

Chapter 8
Protocol Encoding

Anteater: “Actually, some trails contain information in coded form. If
you know the system, you can read what they’re saying just like a book.”
Achilles: “Remarkable. And can you communicate back to them?”
Anteater: “Without any trouble at all. That’s how Aunt Hillary and I have
conversations for hours”.

“Gödel, Escher, Bach”
Douglas R. Hofstadter

According to our definition in Chapter 1, the representation rules for PDUs are just
as much part of the protocol as the rules of the exchange of PDUs. However, until
now we have ignored this topic completely, describing the contents of PDUs in
an abstract manner as records with fields of more or less standard elementary or
composite data types. The representation rules are chosen so as to fulfil a number of
general objectives in relation to the protocol:

1. Efficiency: The information in the PDU should be coded as compactly as possi-
ble.

2. Delimiting: It must be possible for the receiver to recognise the beginning and
end of the PDU.

3. Ease of decoding: It should be easy for the receiver to find out exactly what
information it has received.

4. Data transparency: The representation should be such that arbitrary sequences
of bits can be sent as data within the PDU.

To a certain extent, these rules are in conflict with one another, so compromises
usually have to be accepted.

In practice, there are three principal ways of representing the fields of a PDU
when it is transmitted:

1. Simple binary – or ‘ad hoc’ – encoding in which fixed groups of bits within the
PDU are used to represent the values of the fields in an arbitrary manner.

2. Type-Length-Value (TLV) encoding, in which each field is described by a triplet
of sub-fields. The first of these gives the type of the field, the second gives the
length of the representation of the third sub-field, while the third sub-field gives
the actual value of the field.

241

242 8 Protocol Encoding

Table 8.1 Abstract PDUs for HDLC [131]

PDU type Abstract description
Information I pdu : (ns : N0, ackr : N0, PF : B, in f o : M)
Receive ready RRpdu : (ackr : N0, PF : B)
Receive not ready RNRpdu : (ackr : N0, PF : B)
Reject REJpdu : (ackr : N0, PF : B)
Selective reject SREJpdu : (ackr : N0, PF : B)
Set NR mode SNRMpdu : (PF : B)
Set AR mode SARMpdu : (PF : B)
Set AB mode SABMpdu : (PF : B)
Set NR mode extended SNRME pdu : (PF : B)
Set AR mode extended SARME pdu : (PF : B)
Set AB mode extended SABME pdu : (PF : B)
Disconnect DISCpdu : (PF : B)
Unnumbered acknowledge UApdu : (PF : B)
Unnumbered information UI pdu : (PF : B, in f o : M)
Exchange identification XIDpdu : (PF : B, in f o : M)
Test T EST pdu : (PF : B, in f o : M)
Frame reject FRMRpdu : (PF : B, in f o : M)

3. Matched tag encoding, in which each field is headed by a start tag which con-
tains a keyword identifying the field, and is terminated by a terminator, which
often has the form of a matching end tag.

We shall consider these in turn.

8.1 Simple Binary Encoding

Simple binary encoding offers the most compact representation of the fields of the
PDU, because there is no need for type or length indicators. The price to be paid
for this is generally speaking a lack of flexibility. Thus this style of coding is pre-
ferred for protocols which only use a few types of PDU with fixed contents. This is
generally the case for protocols in the lower layers of the OSI Reference Model.

An example is the HDLC protocol used in the Data Link layer [131]. From an
abstract point of view, this is a protocol for providing a full duplex connection-
mode service, with a two-way window protocol using sequence numbers counted
modulo 8 (or, optionally, modulo 128) in the data transfer phase. There are 17 types
of PDU, which can be described abstractly as shown in Table 8.1. Here, the in f o
field carries the body of the message, ns the sequence number of the message, and
ackr the sequence number of the message being acknowledged. The PF field carries
the so-called Poll/Final information, whose meaning depends on whether the PDU
is sent as a command to produce some kind of reaction from the other party, or
whether it is a response to a command (see Chapter 9). Roughly speaking1, if it is a

1 The full rules are somewhat more complicated, depending on the mode of operation of the data
link. The rules given here correspond to Normal Response Mode (NRM).

8.1 Simple Binary Encoding 243

Table 8.2 Encoding of Control field in HDLC protocol PDUs.
This shows the standard 8-bit encodings of the control field. The Control field in I- and S-PDUs
can also be encoded in a 16-bit Extended Encoding:

I: 0nnnnnnn paaaaaaa S: 10ss0000 paaaaaaa

Format Code Interpretation
I 0nnn paaa nnn= binary representation of ns

aaa= binary representation of ackr
p=1 ⇒ PF = true.

S 10ss paaa aaa= binary representation of ackr
p=1 ⇒ PF = true
ss= 00: RRpdu, 10: RNRpdu,

01: REJpdu, 11: SREJpdu
U 11xx pyyy p=1 ⇒ PF = true

xxyyy= 00001: SNRMpdu, 11000: SARMpdu,
11100: SABMpdu, 00010: DISCpdu,
11011: SNRMEpdu, 11010: SARMEpdu,
11110: SABMEpdu, 00110: UApdu,
00000: UIpdu, 11101: XIDpdu,
00111: TESTpdu, 10001: FRMRpdu.

command, PF = true indicates that the other party is being polled for data. If it is an
Ipdu response, PF = true indicates that this is the final portion of data in a sequence
sent in response to being polled. If it is any other type of PDU sent as a response,
PF = true indicates that there are no data to send in response to being polled.

All these PDUs are coded in the basic format:

01111110

Flag

8n bits

Address

8/16 bits

Control

m bits

Information

16/32 bits

FCS

01111110

Flag

Here, the FCS bit field is a polynomial checksum for the Address, Control and In-
formation fields, evaluated using the CRC-CCITT generator poynomial (for 16-bit
checksum) or CRC-32 (for 32-bit checksum). The Address bit field contains an n-
octet bit sequence identifying the intended receiver of the PDU, and the Information
bit field contains the coding of the in f o field of the PDU, if any. It may be of arbi-
trary length, including 0; a length of 0 indicates that the PDU carries no data.

The Control bit field gives the type of the PDU, together with the ns, ackr and PF
control fields of the PDU where appropriate, according to the coding scheme given
in Table 8.2. Note that three variants are used, corresponding to various classes of
PDU2: I-format (Information transfer format) for I-PDUs, S-format (Supervisory
format) for RR, RNR, REJ and SREJ PDUs, which carry acknowledgement num-
bers but no data, and U-format (Unnumbered format) for the remaining types of
PDU, which carry no numbers, but may or may not carry data. As can be seen,
the values of ns and ackr are represented in a pure binary representation for nat-
ural numbers (in {0..7} for the standard encoding and {0..127} for the extended

2 In HDLC, a PDU is known as a frame

244 8 Protocol Encoding

encoding), while all the other fields are represented in an arbitrary manner chosen
for the compactness of the encoding.

The individual bits of an HDLC PDU are usually transmitted in a synchronous
manner, but the protocol is essentially asynchronous, in the sense that a new PDU
can follow at any time after the previous one. The gap between consecutive PDUs
is filled with some kind of idling bit pattern, for example all 1-bits. To indicate to
the receiver when a new PDU is about to start, the beginning of the PDU is marked
with a Flag field containing a fixed bit pattern, 01111110.

Since HDLC, like most modern data transfer protocols, permits the lengths of
PDUs to vary arbitrarily (in practice up to some maximum number of bits), the re-
ceiver has the problem of how to know what the length of the PDU is. The solution
in HDLC is to mark the end of the PDU with another Flag field. This unfortunately
conflicts with the general aim of achieving data transparency. Obviously, an HDLC
PDU must not contain a bit sequence 01111110 between the two flags, or the re-
ceiver will imagine that this sequence is intended to mark the end of the PDU. The
solution to this problem is to transform the entire body of the PDU (i.e. the sequence
of bits between the two flags), using a technique known as bit stuffing: The sender
inserts an extra 0-bit in the body after every sequence of five consecutive 1-bits, and
the receiver removes any 0-bit which follows five consecutive 1-bits.

The need to mark the beginning and end of the PDU vanishes if all PDUs have
the same length and the protocol is synchronous. In this case, consecutive PDUs
follow one another at constant intervals of time, as in the classical TDM protocols
discussed in Section 4.5.1. In practice, various intermediate styles of protocol are
found. An interesting, but very complex example is the SDH (Synchronous Digital
Hierarchy) protocol [253] used in many modern telecommunication systems. Here,
the ‘frames’ for holding data follow a synchronous scheme, and the data units all
have the same length, but the position of the data within the frames is allowed to
vary. This permits the originator to supply the data slightly early or late in relation
to the strictly synchronous frame timing. Typically this is necessary because the
clock used to generate data within the sending system drifts slightly with time. To
make it possible for the receiver to find the data, each frame contains a pointer (at a
fixed position near the beginning of the frame), indicating where the actual data in
this frame start. This is adjusted by the sender as required.

8.2 TLV Encoding

TLV encoding offers more flexibility than simple binary encoding, in the sense that
it becomes possible to omit fields from a PDU, since the fields which are in fact
included are unambiguously identified by their type sub-fields, and their lengths are
given by explicit length sub-fields. A simple example of this form of encoding is
found in the ISO Transport Layer protocols [138], where the so-called variable part
of each PDU is encoded in this way. This part of the PDU can in principle contain
a large number of optional pieces of information, of which maybe only two or three

8.2 TLV Encoding 245

Table 8.3 Encoding of fields in variable part of ISO Transport Protocol PDUs.
All lengths are measured in octets, and are encoded in an 8-bit unsigned binary representation. x, y
and z are arbitrary. Times and other integer values are encoded in unsigned binary representations.

Field Type code Length Value code
Checksum 1100 0011 2 Binary representation of checksum.
Calling TSAP 1100 0001 x Binary representation of address.
Called TSAP 1100 0010 x Binary representation of address.
TPDU size 1100 0000 1 8-bit binary representation of !log2 l", where l = length of the

TPDU in octets.
Version no. 1100 0100 1 0000 0001

Protection 1100 0101 y User defined.
Extra options 1100 0110 1 0000 mnpq, where:

q=1 ⇒ use of T-expedited data required,
p=1 ⇒ don’t use checksum,
n=1 ⇒ use receipt confirmation,
m=1 ⇒ use N-expedited data.

Alt. classes 1100 0111 n Codes for n alternative protocol classes.
Ack. time 1000 0101 2 16-bit binary representation of max. time needed to produce an

acknowledgement (msec).
Throughput 1000 1001 12 Max. throughput; or

24 Max. throughput, average throughput.
Each throughput is specified by 4 integers in 16-bit binary
representations:

target value, calling→called (oct/sec),
min. acceptable, calling→called (oct/sec),
target value, called→calling (oct/sec),
min. acceptable, called→calling (oct/sec).

RER 1000 0110 3 8-bit binary representations of:
!log10 t", where t = target value,
!log10 t", where t = min. acceptable value,
!log2 s", where s = TSDU size of interest.

Priority 1000 0111 2 16-bit binary representation of priority (as integer value,
0=highest priority).

Transit delay 1000 1000 8 16-bit binary representations of:
target delay, calling→called (msec),
max. acceptable delay, calling→called (msec),
target delay, called→calling (msec),
max. acceptable delay, called→calling (msec).

Reassign time 1000 1011 2 16-bit binary representation of reassignment time, TTR (sec).
Clearing code 1110 0000 z Additional information about the reason for clearing the con-

nection.

are actually needed in any particular case. The fixed part of the PDU, which con-
tains mandatory fields, is encoded using a simple binary encoding. Although a TLV
encoding of any particular piece of information will always be longer than a simple
binary encoding, the encoding of the complete PDU will usually be more compact if
TLV encoding is used for optional fields. The TLV coding used in Transport Layer
PDUs is shown in Table 8.3.

This style of coding is also found in the ISO OSI connectionless-mode Network
protocol [142] the Internet IP protocol [210] and the ISO OSI connection-mode

246 8 Protocol Encoding

Session protocol [140]. The type codes are quite arbitrary, and do not convey any
explicit information about the encoding of the value field.

8.3 ASN.1 Encoding

A more refined form of TLV encoding is to be found in the so-called Basic En-
coding Rules for ASN.1 [159]. ASN.1 [158] is a notation for denoting the abstract
syntax of data (i.e. for describing data in a representation-independent manner), and
is widely used for describing data structures for use in the Application Layer of the
OSI protocol hierarchy. This is convenient, because it then becomes possible to de-
scribe algorithms and applications in a manner which is independent of the ways in
which the data structures are represented on individual systems.

8.3.1 ASN.1 Types

As with most other notations for denoting abstract syntax, including the VDM-like
notation used in this book, ASN.1 permits us to construct data types from a series of
simple types which may be composed in various ways to form structured types. In
addition, subtypes of types can be specified. The notations for ASN.1’s simple types
are listed in Table 8.4(top), and the notations for constructing structured types and
subtypes in Table 8.4(middle) and (bottom) respectively. Both simple and structured
types can be marked with a tag, so that apparently identical types can be differenti-
ated. A tag is made up of a class specification, which delimits the scope of the tag,
together with a number. For example the types:

BOOLEAN
[APPLICAT ION 3]BOOLEAN
[APPLICAT ION 4]BOOLEAN

are different. The classes and their scopes are shown in Table 8.5. A tag’s number
must of course be unambiguous within the relevant scope – for example, for a type
tagged as APPLICATION within the application concerned. Untagged simple or
structured types are implictly UNIVERSAL, with numbers as shown in Table 8.6.
The CHOICE and ANY types have no numbers of their own – the number of the
type actually chosen is used.

8.3 ASN.1 Encoding 247

Table 8.4 Simple types (top), structured types (middle) and subtypes (bottom) in ASN.1.
In addition, there is a universal type, denoted ANY, and a set of ‘ready-made’ useful types, for
specialised purposes such as giving the date and time.

Type notation Denoted set of values
BOOLEAN Truth values: true, false.
INTEGER The whole numbers.
ENUMERATED

{NamedNumberList}
The whole numbers given in NamedNumberList, which may be referred
to by the associated names.

REAL The real numbers expressible in the form m · Be (where m and e are
arbitrary integers and B is 2 or 10), together with +∞ and −∞.

BIT STRING Sequences of 0 or more bits.
OCTET STRING Sequences of 0 or more arbitrary octets.
xxxString Character strings from pre-defined character set xxx.
NULL The empty set.
OBJECT IDENTIFIER Arbitrary identifiers (‘tokens’).

Type notation Denoted set of values
SEQUENCE{TypeList} Sequences whose elements correspond in number and order to the types

in the type list, possibly with omissions (denoted in the type list by
OPTIONAL), which may have default values (denoted by DEFAULT).

SEQUENCE OF Type Sequences of 0 or more elements of the type given by Type.
SET{TypeList} Sets with one member from each of the types in the type list, possi-

bly with omissions (OPTIONAL), which may have default values (DE-
FAULT).

SET OF Type Arbitrary subsets of Type.
CHOICE{TypeList} Union type of the types in the type list.

Subtype notation Denoted set of values
AlternativeList For arbitrary parent types: the values explicitly given in AlternativeList

(for example: (3|5|7|11|13)).
Lower..Upper For (possibly tagged) REAL or INTEGER parent types: The values in the

range Lower to U pper. Lower may be specified as MIN, the minimum
value of the parent type, and U pper as MAX , the maximum value.

SIZE SizeConstraint For SET OF, SEQUENCE OF or STRING parent types: Values where
the number of elements lies in SizeConstraint, which may be any sub-
type of the non-negative integers.

FROM CharList For character string parent types: strings restricted to characters in
CharList.

Table 8.5 Classes and their scopes in ASN.1

Class Used to tag:
UNIVERSAL The types defined explicitly in [158].
APPLICATION Types related to a specific application.
PRIVATE Types related to a specific group of users.
(empty) Local (context-specific) types.

248 8 Protocol Encoding

Table 8.6 Universal class tag numbers (after [158])

1 BOOLEAN 11 −−− 21 VideotexString
2 INT EGER 12 −−− 22 IA5String
3 BIT ST RING 13 −−− 23 UTCTime
4 OCT ET ST RING 14 −−− 24 GeneralizedTime
5 NULL 15 −−− 25 GraphicString
6 OBJ. IDENT IFIER 16 SEQUENCE/SEQ. OF 26 ISO646String
7 OBJ.DESCRIPTOR 17 SET/SET OF 27 GeneralString
8 EXT ERNAL 18 NumericString 28 −−−
9 REAL 19 PrintableString 29 −−−

10 ENUMERAT ED 20 T 61String 30 −−−

8.3.2 ASN.1 Values

Values of the ASN.1 types are denoted in ASN.1 in an obvious way. For example,
values of type BOOLEAN as TRUE or FALSE, values of type INTEGER as op-
tionally signed decimal integers, values of type BITSTRING and OCTETSTRING
as sequences of binary or hexadecimal digits in single quotes (’11010001’B or
’C23F81’H), character strings as sequences of characters from the designated set
in double quotes (”John Q. Smith”, ”Smörgås”) and values of SET, SET OF, SE-
QUENCE or SEQUENCE OF as lists of values of the component types in braces
(for example: {1,3,5,7,11} for a value of type SET OF INTEGER or SEQUENCE
OF INTEGER).

8.3.3 ASN.1 Encoding Rules

When a value expressible in ASN.1 is to be transmitted from one system to another,
a set of rules is required for producing a standard external representation of the value
concerned. The standard set of such rules is described in [159], often referred to as
BASN.1. This uses a TLV encoding scheme, which in the case of structured types is
applied recursively to the fields of the data structure. Some examples are given in
Figure 8.1.

The coding of the type identifier is shown in more detail in Figure 8.2. For types
with small tag numbers, a single octet is used of which the most significant two bits
(marked bits 8 and 7 in the figure) give the tag class, bit 6 shows whether the value
subfield contains a complete TLV encoding of a value of some type (a so-called
constructed encoding), or directly gives the value of the current type (a so-called
primitive encoding). In the latter case we have reached a ‘terminal element’ in the
recursive application of the encoding rules. For tag numbers ≤30, the five least
significant bits are an unsigned binary representation of the tag number. For larger
numbers, the five least significant bits are all ones, and the number is encoded in one
or more following octets, depending on its magnitude, as illustrated in Figure 8.2.

8.3 ASN.1 Encoding 249

Type:
Value:
Coding:

BOOLEAN
TRUE
BOOLEAN
011 6

IA5String
161 6

IA5String
161 6

BOOLEAN
011 6

BOOLEAN
011 6

Length
0116

Length
0516

Length
0516

Length
0116

Length
0116

Value
FF16

Value
536D69746816

Value
536D69746816

Value
FF16

Value
FF16

SEQUENCE{name IA5String, ok BOOLEAN}
{name "Smith", ok TRUE}

[PRIVATE 3] SEQUENCE{name IA5String, ok BOOLEAN}
{name "Smith", ok TRUE}

SEQUENCE
3016

SEQUENCE
3016

[PRIVATE 3]
C316

Length
0A16

Length
0A16

Length
0C16

Type:
Value:

Coding:

Type:
Value:
Coding:

Fig. 8.1 Examples of encoding in BASN.1

8 7 6 5 4 3 2 1

Tag number (< 31)

Class: Encoding:
0 Primitive
1 Constructed

00 Universal
01 Application
10 Context-specific
11 Private Tag number

1 0

Final octetIntermediate octets

8 7 6 5 4 3 2 1

1 1 1 1 1

Leading octet

Fig. 8.2 Encoding rules for type codes in BASN.1

The length can be encoded in two ways. In the definite form, the length is given
explicitly, encoded in a way rather like the tag number, using one or more octets
depending on its magnitude, as shown in Figure 8.3. In the indefinite form, the
length field consists of a single octet, 1000 0000, and the value field is terminated
by two octets consisting entirely of 0-bits, known as the end-of-contents octets. All
the examples in Figure 8.1 use the single-octet definite form.

For a primitive encoding, which will always correspond to a simple type, the
value field is encoded directly in the obvious way, depending on its type, as follows:

BOOLEAN: false: 0000 0000, true: Any non-zero octet.

250 8 Protocol Encoding

8 7 6 5 4 3 2 1

Length (< 32768)

Length

n octets

8 7 6 5 4 3 2 1

1

0

Initial octet

n (< 32767)

Fig. 8.3 Encoding rules for lengths in BASN.1

INTEGER: Twos-complement binary representation using the minimum number
of octets for unambiguous representation, most significant bit first (in the most
significant bit of the first octet).

ENUMERATED: The encoding of the integer associated with the name in the
type definition. For example, given a type defined as:

ENUMERATED{ july(7), august(8), september(9) }

then august will be encoded by the encoding of 8.
REAL: For real value 0, the contents field is empty.

For real value +∞, one octet: 0100 0000 and for −∞, one octet: 0100 0001 is
used.
For all other non-zero real values, there is a choice between a decimal and binary
representation. In the decimal encoding, the first octet is 0000 00xx, and the
remaining octets follow International Standard ISO 6093 [132]3.
In the binary encoding, the real number is represented in the form M ·BE , with
the mantissa in the form S×N×2F . The first octet of the encoding is 1sbb ffgg,
where:

Bits Interpretation
s The sign of the mantissa, S: 0: +1, 1: −1
bb The base for the encoding, B: 00: 2, 01: 8, 10: 16
ff The binary scaling factor, F ∈ {0,1,2,3}, in an unsigned binary represen-

tation.
gg The format for the exponent:

00: Single-octet (octet 2),
01: Two-octet (octets 2 and 3),
10: Three-octet (octets 2,3 and 4),
11: Length (say L) follows in octet 2 of the encoding, and exponent fills
octets 3..(3+L−1).
The exponent, E, is in all cases encoded in a 2-complement signed binary
representation.

The modulus of the mantissa, N, is a non-negative integer value in an unsigned
binary encoding, which follows the the octets of the exponent.

3 The bits xx give the ISO 6093 number form: 01: Form NR1, 10: Form NR2, 11: Form NR3.

8.4 ASCII encodings 251

BIT STRING: For an n-bit bit string: An initial octet, followed by (n + 7) div 8
octets containing the n bits of the bit string, starting with the first bit of the string
in the most significant bit of the first octet.
The initial octet contains an unsigned representation of (8− (n mod 8)) mod 8,
the number of unused bits in the last octet.

OCTET STRING: The octets of the string, in the order in which they appear in
the string.

xxxString: For an n-character string: n octets, each of which contains an 8-bit
encoding of a character of the string, in the order in which the characters appear
in the string.

NULL: Empty. (The length is always 0.)

For a constructed encoding, which may correspond to a bitstring, octetstring or char-
acter string, or to a structured type, the value is encoded by a complete TLV encod-
ing using the rules described above.

It should be evident that this style of encoding gives great flexibility, permitting
the representation of the values of arbitrary non-recursive data structures. Recursive
data structures, such as lists or trees, have to be represented in some appropriate
manner in terms of the types of Table 8.4. Variants of the BASN.1 encoding which
offer data compression [160] or for encoding ASN.1 using XML [161] (see Sec-
tion 8.4.3 below) have also been proposed, but we will not discuss them here.

8.4 ASCII encodings

Whereas BASN.1 encoding is the encoding of choice for data structures in ISO and
ITU-T protocols, and in some Internet Application Layer protocols with relation
to these, such as SNMP [219] and LDAP [228], many other Internet Application
Layer protocols use so-called ASCII encodings for PDUs to be transmitted between
application processes. In an ASCII encoding, the type of the PDU and often the
individual fields in the PDU are identified by plain text keywords, which – at least
in the simplest cases – are made up of characters from the US-ASCII character set.
This type of encoding is by no means space-efficient, but makes it possible for the
human reader to understand at least the general content and purpose of the PDU
without the use of a computer to interpret the encoding. The PDUs are also easy
to produce by standard application programs, as they can be input and output as
ordinary lines of text.

Examples of this style of encoding are found in the well-known Internet protocols
FTP [215], SMTP [213], POP3 [222], IMAP4 [226], NNTP [216] and HTTP [43].
Figure 8.4 gives an example of a set of PDUs exchanged using SMTP, as would
be the case when sending a mail message to a mail server for transmission to a
named addressee. Like the other protocols mentioned here, SMTP uses matched tag
encoding, in which commands start with an alphabetic keyword and responses start
with a numeric response code; both commands and responses are terminated by a
NL character.

252 8 Protocol Encoding

HELO goofy.dtu.dk

250 design.dilbert.org

MAIL FROM:<bones@goofy.dtu.dk>

250 OK

RCPT TO:<snodgrass@design.dilbert.org>

250 OK

DATA

354 Start mail input; end with <CRLF> . <CRLF>

From: Alfred Bones <bones@goofy.dtu.dk>

To: William Snodgrass <snodgrass@design.dilbert.org>

Date: 21 Aug 2000 13:31:02 +0200

Subject: Client exploder

Here are the secret plans for the client exploder

etc. etc. etc.

.

250 OK

QUIT

221 design.dilbert.org

Fig. 8.4 Exchange of messages in SMTP.
Commands from the client to the server are in typewriter font and replies from server to client
are boxed in italic typewriter font.

8.4.1 MIME encoding

A particularly interesting form of ASCII encoding is the MIME encoding used for
representing data in various formats for transmission between application processes.
MIME is an acronym for Multipurpose Internet Mail Extensions. Originally des-
igned as a representation for non-ASCII data in Internet mail messages to be sent
by the SMTP protocol, it has subsequently also been exploited in other contexts. In
contrast to the very fine-grained style of encoding seen in ASN.1, MIME encoding
is intended for use with substantial chunks of data, such as documents or images.
Each such chunk is known as a MIME entity [224]. An entity is encoded as a header
followed by a body, where the header consists of a sequence of fields which specify:

1. The content type of the body.
2. The encoding of the body.
3. A reference (for example, a serial number or identifier) which can be used to

refer to the body from other entities.
4. A textual description of the entity.
5. Possibly some extension fields, describing additional or non-standard attributes

of the entity.

The content type header field specifies a type and subtype, where the type
can be discrete or composite. An entity of a discrete type contains a single block
of data representing a text, image, audio stream, video stream or similar, while an

8.4 ASCII encodings 253

Table 8.7 Standard MIME entity types and subtypes [225]

Discrete type Subtypes Explanation
text plain Plain text, viewed as a sequence of characters, possibly with

embedded line breaks or page breaks.
enriched Text with embedded formatting commands in a standard

markup language.
image jpeg Images encoded in accordance with the JPEG standard using

JFIF encoding [206].
audio basic Single channel audio encoded using 8-bit ISDN mu-law at a

sample rate of 8000 Hz. [254]
video mpeg Video encoded in accordance with the MPEG standard [207].
application octet-stream Arbitrary binary data.

postscript Instructions for a PostScriptTM interpreter.
x-... User-defined application subtype.

Composite type Subtypes Explanation
message rfc822 A complete mail message in accordance with Internet

RFC822.
partial A (numbered) fragment of a larger MIME entity.
external-body A reference to the body of a mail message which is not em-

bedded in the current entity.
multipart mixed A sequence of independent body parts, each delimited by a

unique sequence of characters.
alternative A sequence of body parts, each delimited by a unique sequence

of characters, and each representing an alternative version of
the same information.

digest A sequence of independent body parts, which by default are
messages.

parallel A set of independent body parts, each delimited by a unique
sequence of characters.

entity of a composite type is composed from smaller entities, which may themselves
be of discrete or composite type. A number of standardised types and subtypes are
pre-defined in the MIME standards, and others can be added either informally or
via a formal registration process to the IANA. The standard types defined in Part 2
of the Internet MIME standard [225] can be seen in Table 8.7. The types currently
registered with the IANA can be found listed on the IANA’s website at:

http://www.iana.org/assignments/media-types/

For several of these types and subtypes, content type header fields may also
include parameters, for example the actual character set used in a text/plain en-
tity, the delimiter string in a multipart entity, the fragment number in a message/
partial entity, the access type (FTP, ANON-FTP, LOCAL-FILE,. . .), expiration date,
size and access rights (read, read-write) for a message/external-body entity,
and so on.

The encoding header field describes the way in which the content has been
encoded in addition to the encoding implied by the content type and subtype. An
encoding which is not an identity transformation may be needed if the body of the
entity contains data which for some reason cannot be passed transparently by the

254 8 Protocol Encoding

protocol in use. For example, basic SMTP can only be used to transfer sequences of
ASCII characters in a 7-bit representation. The standard encodings are:

7bit No transformation has been performed on the data, which consist entirely of
lines of not more than 998 characters in a 7-bit representation, separated by a
CRLF character pair.

8bit No transformation has been performed on the data, which consist entirely of
lines of not more than 998 characters in an 8-bit representation, separated by a
CRLF character pair.

binary No transformation has been performed on the data, which consist of a
sequence of arbitrary octets.

quoted-printable A transformation to quoted-printable form has taken place on
the data, such that:

1. non-graphic characters,
2. characters which are not ASCII graphical characters,
3. the equals sign character,
4. white space (SP, TAB) characters at the end of a line

are replaced by a 3-character code "=XY", where X and Y are two hexadecimal
digits which represent the code value of the character. US-ASCII graphical char-
acters (apart from =) may optionally be represented in the same way or may
appear literally. Lines longer than 76 characters are split by the insertion of ‘soft
line breaks’ (represented by an equals sign followed by a CRLF character pair).
Thus for example:

Les curieux =E9v=E9nements qui font le sujet de cette chron=
ique se sont produits en 194., =E0 Oran.

represents the text Les curieux événements qui font le sujet de cette chronique se
sont produits en 194., à Oran. – the opening sentence of Albert Camus’ novel
“La Peste”. Here E9 is the code value for é, E0 is the value for à, and the equals
sign which ends the first line indicates a soft line break. This transformation is
intended to allow text to pass through systems which are restrictive with respect
to line length and character set.

base64 A transformation to base-64 coding has taken place.
Here, each 24 bit sequence of data is encoded as 4 characters from a 64-character
subset of the US-ASCII set of graphical characters, where each character corre-
sponds to 6 bits of the data, as shown in Table 8.8. For example:

101101011110000111010011

t e H T

001111101011111110000000

P r + A

Data sequences which are not multiples of 6 bits are padded on the right with
0-bits to a multiple of 6 bits before conversion to characters as above; if they
are then not a multiple of 4 characters, they are further padded on the right with
the character "=". The characters are broken up into lines of not more than 76
characters, the lines being separated by CRLF (which has no significance for

8.4 ASCII encodings 255

Table 8.8 Base64 encoding of 6-bit binary sequences

Data Character Data Character Data Character Data Character
000000 A 010000 Q 100000 g 110000 w
000001 B 010001 R 100001 h 110001 x
000010 C 010010 S 100010 i 110010 y
000011 D 010011 T 100011 j 110011 z
000100 E 010100 U 100100 k 110100 0
000101 F 010101 V 100101 l 110101 1
000110 G 010110 W 100110 m 110110 2
000111 H 010111 X 100111 n 110111 3
001000 I 011000 Y 101000 o 111000 4
001001 J 011001 Z 101001 p 111001 5
001010 K 011010 a 101010 q 111010 6
001011 L 011011 b 101011 r 111011 7
001100 M 011100 c 101100 s 111100 8
001101 N 011101 d 101101 t 111101 9
001110 O 011110 e 101110 u 111110 +
001111 P 011111 f 101111 v 111111 /

Table 8.9 MIME entity types and subtypes for S/MIME [245]

Type Subtypes Explanation
multipart signed A signed, cleartext message with two parts: the message itself

and the signature.
application pkcs7-mime A signed or encrypted MIME entity or a set of one or more

public-key certificates.
pkcs7-signature Signature from a signed multipart message.
pkcs10-mime A certificate registration request message.

the coding). This transformation is intended to allow binary data to pass through
systems which are restrictive with respect to line length and character set.

The rather curious length restrictions on character sequences are historical relics
from a time when mail handling systems had very limited buffer capacity. A com-
plete example of a mail message, composed of a multipart entity in MIME encoding,
and illustrating several of these features, is shown in Figure 8.5.

8.4.2 S/MIME encoding

S/MIME [245] is an enhancement to MIME which offers security facilities, so that
documents can be digitally signed, encrypted or both. This involves the introduction
of some new MIME content types, which are shown in Table 8.9. The pkcs7-mime
subtype can be used for several purposes, and the way in which an entity with this
subtype is to be understood is specified by a MIME parameter, smime-type, which
can take on values as follows:

256 8 Protocol Encoding

From: Ebenezer Snurd <ebes@bugeyed.monster>

To: Rod Akromats <rak@tundranet.ice>

Date: Wed, 09 Aug 2000 12:34:56 +0100 (CET)

Subject: Finalised material

MIME-Version: 1.0

Content-type: multipart/mixed; boundary=5c12g7YTurbl9zp4Ux

This is the MIME preamble, which is to be ignored by

mail readers that understand multipart format messages.

--5c12g7YTurbl9zp4Ux

Content-type: text/plain; charset=ISO-8859-1

Content-transfer-encoding: 8bit

Dear Rod,

Here are some recent pictures, including the mail I told

you about from the Clones. Enjoy!

Ebe.

--5c12g7YTurbl9zp4Ux

Content-type: image/jpeg; name="clopics.jpg"

Content-transfer-encoding: base64

/9j/4AAQSkZJRgABAQAAAQABAAD/Ap3u107+yacdfefe66menop4RorS8hach8tf3

...

--5c12g7YTurbl9zp4Ux

Content-type: message/external-body; access-type=local-file;

name="/usr/home/ebes/pix/clo08.ps";

site="drones.hive.co.uk"

Content-type: application/postscript

Content-id: <id003@woffly.speakers.com>

--5c12g7YTurbl9zp4Ux--

This is the MIME epilogue. Like the preamble, it is

to be ignored.

Fig. 8.5 MIME encoding of a mail message with three parts.
The parts are separated by a boundary marker starting with "--", followed by the boundary string
"5c12g7YTurbl9zp4Ux". Header fields are shown in typewriter font and bodies in italic

typewriter font.

signed-data indicates a signed MIME entity. This is made up of a sequence of
blocks, including the actual message, a message digest (MD5 or SHA) encrypted
with the signer’s private key, and information about the signer, such as its public
key certificate(s).

enveloped-data indicates an encrypted MIME entity. This is made up of a se-
quence of blocks, including the actual message content encrypted using a ses-
sion key for an SKCS (3DES or RC2/40), the session key encrypted using the
receiver’s public RSA key, and information about the sender, such as its public
key certificate(s).

8.4 ASCII encodings 257

From: Ebenezer Snurd <ebes@bugeyed.monster>

To: Rod Akromats <rak@tundranet.ice>

Date: Wed, 09 Aug 2002 12:34:56 +0100 (CET)

Subject: Greetings from Ebe.

MIME-Version: 1.0

Content-type: multipart/signed; micalg=md5;

boundary=to5oman4y8sec2ret7s

--to5oman4y8sec2ret7s

Content-type: text/plain; charset=ISO-8859-1

Content-transfer-encoding: 8bit

Dear Rod,

Finally I made it to S. America with the documents I

promised to deliver. Hope to see you soon.

Ebe.

--to5oman4y8sec2ret7s

Content-type: application/pkcs7-signature; name=smime.p7s

Content-transfer-encoding: base64

Content-disposition: attachment; filename=smime.p7s

ghyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfHfYT6

4VQpfyF467GhIGfHfYT6jH77n8HHGghyHhHUujhJh756tbB9HGTrfvbnj

n8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujpfyF4

7GhIGfHfYT64VQbnj756

--to5oman4y8sec2ret7s--

Fig. 8.6 MIME encoding of an S/MIME multipart/signed mail message

certs-only indicates an entity containing only public key certificates or a certifi-
cate revocation list.

S/MIME uses public key certificates in accordance with the ITU-T recommendation
X.509 [180]. In general, S/MIME entities contain binary information and are trans-
ferred using the base64 MIME transfer encoding; the only exception can be the
plaintext message part of the multipart signed entity type, which can be trans-
ferred using any encoding which ensures that the message will not be altered during
the transfer. Figure 8.6 shows an example of a mail message, which you should try
to compare with Figure 8.5; the second part of the message is the signature, which
is intended to be delivered to the receiver’s mailer as an attachment.

8.4.3 XML encoding

The final ASCII encoding which we shall consider here is the encoding associ-
ated with the Extensible Markup Language (XML) [271]. XML is a notation orig-
inally developed for describing the structure and content of text documents, and is
in fact a restricted form of the Standard Generalized Markup Language (SGML),

258 8 Protocol Encoding

document ::= prolog element

prolog ::= [XMLdecl] [doctypedecl]

XMLdecl ::= "<?xml" VersionInfo [EncodingDecl] "?>"

VersionInfo ::= "version" "=" """ VersionNum """

EncodingDecl ::= "encoding" "=" """ EncName """

element ::= EmptyElemTag |

Stag content Etag

Stag ::= "<" Name {Attribute}* ">"

Etag ::= "</" Name ">"

EmptyElemTag ::= "<" Name {Attribute}* "/>"

content ::= [CharData] { (element | Ref) [CharData] }*
Ref ::= EntityRef | CharRef

EntityRef ::= "&" Name ";"

CharRef ::= "&#" { digit}+ ";" |

"&#x" {hexdig}+ ";"

Name ::= (letter | "_" | ":") {alfanumc}*
EncName ::= letter {alfanum}*
Attribute ::= Name "=" """ { (Ref | notmetac) }*
VersionNum ::= {alfanumc}+
alfanum ::= letter | digit | "." | "-" | "_"

alfanumc ::= alfanum | ":"

letter ::= "a" | ... | "z" | "A" | ... | "Z"

digit ::= "0" | "1" | ... | "9"

hexdig ::= digit | "a" | ... | "f" | "A" | ... | "F"

notmetac ::= any character except < & or "

Fig. 8.7 Syntax of XML documents.
The syntax is given in EBNF, where [x] indicates an optional syntactic element x, while {x}*
indicates a repetition of 0 or more elements and {x}+ a repetition of 1 or more elements.

standardised by ISO [164]. However, XML is now more generally employed for de-
scribing hierarchically structured data of any kind, and is therefore convenient for
use when exchanging such data between computer systems.

The basic text objects which are exchanged using XML are known as XML docu-
ments. A simplified syntax for XML documents is shown in Extended BNF (EBNF)
notation in Figure 8.7. The full syntax allows a document to include comments,
white space, processing instructions, parameterisations, optional sections and other
information which we shall not consider here; the complete description can be found
in [271].

A well-formed XML document starts with a prolog which identifies the version
of XML being used and optionally specifies the character encoding employed in the
document. The default encoding is the Unicode encoding UTF-8 [229], of which the
standard US-ASCII encoding is a subset. The prolog is followed by an element,
which is the body of the document and specifies its actual content.

The overall structure of the document is hierarchical, and is often described in the
form of a tree whose root is the top-level element and whose nodes are the underly-
ing elements. An element may have a content, made up of portions of text (“charac-

8.4 ASCII encodings 259

ter data”, CharData) or other elements, or it may be empty. XML uses matched tag
encoding, and each element and sub-element is identified by a tag referring to the
name of the element. Empty elements just consist of a tag, EmptyElemTag, possibly
containing attributes:

Elements with content start with a start tag, Stag, which may also contain attributes,
and are terminated by the corresponding end tag, Etag. For example:

<h1>Pooh’s Poem</h1>
<stanza align="right">

<line>Isn’t it funny</line>
<line>How a bear likes honey?</line>
<line>Buzz! Buzz! Buzz!</line>
<line>I wonder why he does?</line>

</stanza>

It follows from the requirement of hierarchy that sub-elements must not overlap but
be properly nested, as in the case of the elements stanza and line in the example.

The name of an XML element may contain letters, decimal digits and the four
special characters point, hyphen, underline and colon. The character colon (":") has
a special significance, as it is used to construct names which are qualified by a prefix
which indicates that the name is taken from a particular namespace, i.e. the set of
names which are defined in a particular set of definitions. The namespace prefix is
used to ensure that names are unambiguous within the scope of one or more XML
documents, so that for example the start tags:

<goofy>
<loc:goofy>
<ohnonotagain:goofy>

refer to goofy elements defined in different contexts (assuming of course that the
prefixes loc and ohnonotagain refer to different namespaces).

Generally, each namespace has two identifiers:

1. The namespace prefix, a short identifier which can be used as a convenient ab-
breviation for the full name of the namespace.

2. A long identifier, which is the full name of the namespace, and conventionally has
the form of a URI (see Section 11.4.1), i.e. an identifier which specifies the name
of a system and a path to a resource (typically a file) on that system. When a URI
is used as a namespace identifier, it is in fact not necessary that it refer to a real
system or to an existing resource. The only requirement is that it is unambiguous
in all the contexts in which it will be used. To ensure this in practice, it will
usually refer to a system under the control of the originator of the XML element
and to a (possibly non-existent) file on this system.

A namespace definition defines the prefix and its equivalent full name. For example:

loc="http://phoney.com/fakefile1"

260 8 Protocol Encoding

Fig. 8.8 Some common
namespaces in XML.
The namespace with pre-
fix xmlns contains defini-
tions of the other standard
namespaces, which contain
definitions of elements and
types. Namespaces are here
identified by their prefixes.
Only a few examples are
shown.

xsi

wsdl

xmlns
int

dateTime

decimal

float

portType

message

binding

type

Array

int

decimal

xsd SOAP−ENC

defines loc as a prefix which abbreviates "http://phoney.com/fakefile1".
The definition is included as an attribute of an XML element and is valid throughout
that element unless locally overwritten by inner namespace definitions in embedded
sub-elements. A common practice is to define such a namespace for each docu-
ment containing definitions of named XML elements or types. We shall later meet a
number of standard namespaces referring to collections of standard types and other
definitions for use in XML. For example, the namespace prefix xmlns refers to
the namespace for the standard set of XML namespace definitions, and the prefix
xmlns:xsd refers to the namespace which contains standard XML type definitions.
This is illustrated in Figure 8.8. Since xmlns is the default namespace prefix for
namespace definitions, xmlns:xsd can normally be reduced just to xsd. The full
rules for disambiguating names with only a partial prefix or no prefix at all can be
found in [272].

The desired structure for the document is usually (though not necessarily) spec-
ified by the use of a so-called schema language; if such a specification is given,
the document is required to conform to it. There are many proposals for schema
languages for XML, but we shall only consider two possibilities, namely to use:

1. A Document Type Definition (DTD), as defined in the specification of XML ver-
sion 1.0 [271].

2. An XML Schema, as defined in [267, 268].

If a DTD is used, a doctypedecl is included in the prolog of the XML docu-
ment. The syntax of this is shown in Figure 8.9. Essentially, this offers two possi-
bilities:

1. The DTD can be included locally in the document, as a markupdecl enclosed in
square brackets.

2. The DTD (again as a markupdecl) can be in an external file, referred to via a
URI, which specifies the system on which the file is found and the path to the
file.

8.4 ASCII encodings 261

doctypedecl ::= "<!DOCTYPE" Name [ExternalID]

["[" {markupdecl}* "]"] ">"

markupdecl ::= elementdecl | AttListDecl | EntityDecl

elementdecl ::= "<!ELEMENT" Name contentspec ">"

contentspec ::= "EMPTY" | "ANY" | Mixed | children

Mixed ::= "(" "#PCDATA" {"|" Name}* ")*" |

"(" "#PCDATA" ")"

children ::= (choice | seq) [repeater]

choice ::= "(" cp { "|" cp }+ ")"

seq ::= "(" cp { "," cp }* ")"

cp ::= (Name | choice | seq) [repeater]

repeater ::= "?" | "*" | "+"

AttListDecl ::= "<!ATTLIST" Name {AttDef}* ">"

AttDef ::= Name AttType DefaultDecl

AttType ::= StringType | TokenizedType | EnumeratedType

DefaultDecl ::= "#REQUIRED" | "#IMPLIED" | ["#FIXED"] AttValue

EntityDecl ::= "<!ENTITY" Name Entityvalue ">"

AttValue ::= literal

EntityValue ::= literal

Fig. 8.9 Syntax of Document Type Definitions

The content of a DTD consists of a sequence of markup declarations, each of
which specifies the structure, form or other properties of the elements which may
appear in the body of the document. The content of elements may be defined in
terms of choices between or sequences of other elements, which may be themselves
be choices (indicated by "|"), sequences (indicated by "*" or "+") or optional
elements (indicated by "?"). It is also possible to define elements which have no
content (EMPTY) or arbitrary content (ANY).

Figure 8.10(a) shows an example of a DTD, as it might appear in a separate file.
It describes the structure of documents for use as business cards: Each card contains
a description of a person, one or more lines of address, one or more phone numbers
and an optional e-mail address. The description of a person is itself a sequence of
elements, which specify the person’s name, optionally his or her position in the
company, and the name of the division of the company in which he or she works.
Each of the “terminal” items is here just described as #PCDATA, which essentially
just means it is a legal XML character sequence. The hierarchical structure of such
business cards is shown in Figure 8.10(b).

The person’s name (pname) is associated with two attributes: The person’s title
and professional qualifications, which are optional. In general, an attribute value can
be defined as being:

• #IMPLIED: Giving a value for the attribute is optional, and no default is defined.
• #REQUIRED: Giving a value for the attribute is mandatory, and no default is

defined.
• A specific value. Giving a value for the attribute is optional, and the specific

value is used as default.

262 8 Protocol Encoding

(a) (b)

<!ELEMENT card (person,address+,phone+,email?)>

<!ELEMENT person (pname,position?,division)>

<!ELEMENT pname (#PCDATA)>

<!ATTLIST pname title (Dr.|Mr.|Ms.) #IMPLIED

qual CDATA #IMPLIED>

<!ELEMENT position (#PCDATA)>

<!ELEMENT division (#PCDATA)>

<!ELEMENT address (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT email (#PCDATA)>

person

address

phone

email

pname

position

division

title

qual

card

Fig. 8.10 (a) A DTD describing the structure of business cards and (b) the corresponding structural
hierarchy

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE card SYSTEM "card.dtd">

<card>

<person>

<pname title="Dr." qual="M.A.,Ph.D.">Phil Anderer</pname>

<position>Director of Product Enhancement</position>

<division>Design & Technology</division>

</person>

<address>PhoneySpecs Inc.</address>

<address>28751B Beach Avenue</address>

<address>Georgetown, Grand Cayman</address>

<phone>(+1-809)9876-5432</phone>

<phone>(+1-809)2345-6789</phone>

<email>phil@phoney.com</email>

</card>

Fig. 8.11 A document which conforms to the DTD for business cards

• #FIXED value: Giving a value for the attribute is optional, but if one is given it
must be the specific value, which is the default value.

In the case of the title attribute, an explicit choice of allowed values is given. In
the case of the qual attribute, any sequence of characters will do. An instance of an
XML document which conforms to this DTD is shown in Figure 8.11.

The DTD notation is by now considered a rather outdated schema language, as it
does not enable the designer to specify very much about what is allowed and what is
not allowed in documents which conform to a given definition. For example, in the
case of the business card DTD, it is not possible to specify that the phone number
actually has the correct syntax for an international phone number – it just has to be
a sequence of characters. Similarly, it is not possible to specify relationships which
have to be preserved between various parts of the document, for example that a
particular element may only appear if another one is also present. The more modern
XML Schema language is one attempt at rectifying these deficiencies.

8.4 ASCII encodings 263

A schema in the XML Schema notation describes the structure and type of the
elements which make up the document. This can be done at a much greater level
of detail than by using a DTD, as the notation permits the definition of types which
very precisely describe the values which are allowed to appear in the elements of
the document. A schema for the business card documents might, for example, be
as shown in Figure 8.12. Note that the attributes of the schema element show that
this set of type and element definitions is associated with a namespace with prefix
xmlns:c and full name "http://phoney.com". This namespace, referred to by
the abbreviated prefix c, is used to ensure that references to locally defined type and
element names are unambiguous. An XML document which uses this definition to
describe an instance of a business card could then look as in Figure 8.13. In the
figure, it is assumed that the schema is located in a file cards.xsd as referred to in
the schemaLocation attribute in the start tag of the card element.

8.4.4 XML types

The types which may be used to specify entities in XML are described in refer-
ence [268], which also explains how new types can be defined in terms of already
defined ones. XML types fall into two categories:

1. Simple types, whose elements are essentially unstructured values, which can be
used as the values of attributes or as “character data”.

2. Complex types, whose elements may contain attributes or be composed of sub-
elements.

The type name anySimpleType is used to denote the union of all possible simple
types, and anyType the union of all possible simple and complex types.

XML Simple Types

A simple type may be:

• An atomic type. An element of an atomic type describes a value without distin-
guishable inner parts, such as an integer, a real, or a string.

• A list type. An element of a list type describes a sequence of items of an atomic
type.

• A union type, composed from two or more atomic or list types. An element of a
union type can belong to any of the types included in the union.

Some of the standard simple types available in version 1.0 of XML are summarised
in Table 8.10. All the examples in the table are in fact atomic types. The namespace
xsd referred to in the type names is the XML standard namespace which contains
the definitions of XML Schema Data types.

In XML, types are all defined in terms of a set of basic pre-defined types which
are considered primitive. Of the simple types given in Table 8.10, those above the

264 8 Protocol Encoding

<schema xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:c="http://phoney.com"

targetNameSpace="http://phoney.com"

elementFormDefault="qualified">

<element name="card">

<complexType>

<sequence>

<element ref="c:person"/>

<element name="address" minOccurs="1" maxOccurs="3" type="xsd:string"/>

<element ref="c:phone" minOccurs="1" maxOccurs="2"/>

<element name="email" type="xsd:string"/>

</sequence>

</complexType>

</element>

<element name="person">

<complexType>

<sequence>

<element ref="c:pname"/>

<element name="position" minOccurs="0" maxOccurs="1" type="xsd:string"/>

<element name="division" type="xsd:string"/>

</sequence>

</complexType>

</element>

<element name="pname">

<complexType>

<element name="personname" type="xsd:string"/>

<attribute name="title" type="c:titles" use="optional"/>

<attribute name="qual" type="xsd:string" use="optional"/>

</complexType>

</element>

<element name="phone">

<complexType>

<sequence>

<element name="ccode" type="c:countrycode"/>

<element name="subno" type="c:subscriberno"/>

</sequence>

</complexType>

</element>

Type definitions
</schema>

Fig. 8.12 An XML Schema description of the structure of business cards.
Definitions of the types titles, countrycode and subscriberno can be found in Figure 8.14.

8.4 ASCII encodings 265

<?xml version="1.0" encoding="UTF-8" ?>

<card xmlns="http://phoney.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://phoney.com cards.xsd">

<person>

<pname title="Dr." qual="M.A.,Ph.D.">Phil Anderer</pname>

<position>Director of Product Enhancement</position>

<division>Design & Technology</division>

</person>

<address>PhoneySpecs Inc.</address>

<address>28751B Beach Avenue</address>

<address>Georgetown, Grand Cayman</address>

<phone>

<ccode>(+1809)</ccode>

<subno>9876-5432</subno>

</phone>

<phone>

<ccode>(+1809)</ccode>

<subno>2345-6789</subno>

</phone>

<email>phil@phoney.com</email>

</card>

Fig. 8.13 A document which conforms to the XML Schema schema for business cards

line are primitive. Types such as int, short and negativeInteger are examples
of derived simple types. In general, an XML type may be derived from one or more
other XML types (known as its base types) by:

• Restriction.
• List construction, to give a list type.
• Union construction, to give a union type.

The examples in the table are all defined by applying various forms of restriction
to the primitive type decimal or string: For example, int is derived by select-
ing those decimal numbers which have zero fractional part and whose integral parts
lie in the interval [−231..+231−1]. Similarly, enumerated types can be defined by
selecting a subset of some base type. The required restrictions are defined by spec-
ifying the values for one or more facets of the base type from which the restricted
type is to be derived. Table 8.11 lists the facets available for this purpose.

For example, a type 20Century whose values include the years of the 20th cen-
tury (1901–2000) could be defined from the base type decimal as shown in Fig-
ure 8.14(a). Similarly, a type digraph whose values include all combinations of
pairs of (lower or upper case) English letters could be defined as in Figure 8.14(b),
and the types required for completing the XML Schema definition in Figure 8.12
could be defined as shown in Figure 8.14(c), (d) and (e). These state that exactly the
strings "Dr.", "Mr." and "Ms." can be used as titles, that a country code consists of
a plus sign followed by a sequence of decimal digits starting with a non-zero digit,
all enclosed in parentheses (for example "(+358)"), and that a subscriber number

266 8 Protocol Encoding

Table 8.10 Some built-in simple XML types. The types above the line are primitive types, and
those below the line are derived types, in this case derived from the type decimal or string by
various forms of restriction.
Type name Set of values in type Value examples
xsd:decimal Decimal fractions, Q 12.345678, -1.23, 10.00
xsd:float Signed single precision floating point

numbers,
{m ·2e|m ∈ {−224..224}∧ e ∈ {−149..104}}

-12.345E3

xsd:double Signed double precision floating point
numbers,
{m ·2e|m ∈ {−253..253}∧e ∈ {−1075..970}}

-12.3456789E3

xsd:boolean Boolean values, {true, false} true
xsd:string Strings of characters "good morning"

xsd:dateTime Date/times 2004-04-01T04:05:06
xsd:base64Binary Base64 encoded binary GWalP2A=
xsd:hexBinary Hexadecimal integer 0FB7
xsd:integer Integers, Z 1256734982471524, -1
xsd:negativeInteger Negative integers, {i ∈ Z|i < 0} -32768
xsd:nonNegativeInteger Non-negative integers, {i ∈ Z|i≥ 0} 0, 12345671826381
xsd:long 64-bit signed integers, {−263..263−1} -1, 1234567890
xsd:unsignedLong 64-bit unsigned integers, {0..264−1} 0, 1, 1234567890
xsd:int 32-bit signed integers, {−231..231−1} -1, 1234567
xsd:unsignedInt 32-bit unsigned integers, {0..232−1} 0, 123456
xsd:short 16-bit signed integers, {−215..215−1} -1234, 456, 0
xsd:unsignedShort 16-bit unsigned integers, {0..216−1} 1234, 456, 0
xsd:normalizedString Strings with TAB, CR, LF replaced by SP. " Who is this? "

xsd:token Strings with leading and trailing space
removed and adjacent space characters
replaced by single space.

"Who is this?"

Table 8.11 Facets for restriction of simple types in XML

Facet Explanation
length The number of units of length occupied by values of the type: measured in

characters for a string or URI, in octets for a hexBinary or base64Binary
value, and in the number of elements for a list type.

minLength The minimum permitted number of units of length.
maxLength The maximum permitted number of units of length.
pattern A Perl-like regular expression constraining the pattern of characters in the lexical

representation of the values.
enumeration An enumerated subset of the base type.
whiteSpace A rule for handling white space characters in types derived from the string base

type:
preserve: No transformation of white space.
replace: Replace TAB, CR and LF by SP.
collapse: After replace, remove leading and trailing space and collapse con-

tiguous sequences of spaces to a single SP.
maxInclusive Inclusive upper bound of value space.
maxExclusive Exclusive upper bound of value space.
minInclusive Inclusive lower bound of value space.
minExclusive Exclusive lower bound of value space.
totalDigits Maximum total number of digits.
fractionDigits Maximum number of digits in fractional part of number.

8.4 ASCII encodings 267

(a) <xsd:simpleType name="20Century">

<xsd:restriction base="xsd:decimal">

<xsd:fractionDigits="0"/>

<xsd:minExclusive value="1900"/>

<xsd:maxInclusive value="2000"/>

</xsd:restriction>

</xsd:simpleType>

(b) <xsd:simpleType name="digraph">

<xsd:restriction base="xsd:string">

<xsd:length value="2"/>

<xsd:pattern value="[a-zA-Z]+"/>

</xsd:restriction>

</xsd:simpleType>

(c) <xsd:simpleType name="titles">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="Dr."/>

<xsd:enumeration value="Mr."/>

<xsd:enumeration value="Ms."/>

</xsd:restriction>

</xsd:simpleType>

(d) <xsd:simpleType name="countrycode">

<xsd:restriction base="xsd:string">

<xsd:whiteSpace="collapse"/>

<xsd:pattern value="\(\+[1-9][0-9]*\)"/>

</xsd:restriction>

</xsd:simpleType>

(e) <xsd:simpleType name="subscriberno">

<xsd:restriction base="xsd:string">

<xsd:whiteSpace="collapse"/>

<xsd:pattern value="[0-9]+(\-[0-9]+)*"/>

</restriction>

</simpleType>

Fig. 8.14 Simple XML types defined by restriction.
(a) A type including the years from the 20th century. (b) A type including all digraphs of letters
from the English alphabet. (c), (d) and (e): Types required for the XML Schema definition of
Figure 8.12.

consists of one or more non-empty sequences of decimal digits separated by minus
signs (for example "123-4567-22")4.

4 Note than in patterns, the backslash character is used as an escape character, to indicate that the
following character is to appear literally in the string, instead of having its usual significance for
specifying the pattern. This is necessary if any of the pattern metacharacters \|.-^?*+{}()[] are
to be used literally.

268 8 Protocol Encoding

XML Complex Types

In contrast to elements of simple types, which contain a single value and no at-
tributes, an element of a complex type may contain attributes and possibly also a
content, which may be made up of one or more individually identifiable sub-parts.
This makes it possible to define complex structures in XML and to describe the
content and other properties of instances of these structures.

Figure 8.12 contains a number of examples of definitions of complex types in the
XML Schema notation. Attribute declarations specify the name of the attribute, the
type of the value of the atribute, and possibly a usage requirement, which specifies
whether a value for the attribute must be provided. The usage requirement can be
optional (the default), required or prohibited. Attributes can only have simple
types.

The actual content of elements of a complex type is described by a content model,
which may be:

• Empty: No content can be provided. This is the default.
• Simple: Only character data is allowed.
• Defined by a regular expression: as a combination of sequences of or choices

between elements. The elements may be of different types, and may be fully
defined by name and type or by reference to another element definition. Each of
them may be qualified by the attributes minOccurs and/or maxOccurs to specify
respectively the minimum and maximum number of times that they may appear.

The type person in Figure 8.12 is an example of a complex type defined by a
regular expression, in this case a sequence of three elements, of which the first is
defined by reference to the definition of the element pname, and the two others are
defined by name and type. Furthermore, the second one is optional (minOccurs=0
and maxOccurs=1).

A content model which uses sequences can be used to describe structures such
as records (where the elements may have different types or be optional) and ar-
rays. Including choices makes it possible also to describe variant records. No stan-
dard schemas for such structures are, however, defined in the specification of XML
Schema [267]. New complex types can, as in the case of simple types, also be de-
rived from already defined complex types by restriction. We shall not go into details
here, but refer you to [267].

Large number of schemas defining complex types have been published, both for
general purposes and in connection with specific applications. We shall in Sec-
tion 10.6.5 see some examples of the use of XML in connection with access to
distributed objects, and in Section 11.5 how it is used for describing general web
services.

8.4 ASCII encodings 269

(a) <?xml version="1.0">

<PaymentInfo xmlns="http://clearing.org/payment">

<Name>Alice Malice</Name>

<CreditCard>

<Number>9900 1357 9111 3151</Number>

<Issuer>Financial Disservices Inc.</Issuer>

<Expiry>11/07</Expiry>

</CreditCard>

</PaymentInfo>

(b) <?xml version="1.0">

<PaymentInfo xmlns="http://clearing.org/payment">

<Name>Alice Malice</Name>

<EncryptedData>

<EncryptionMethod

Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>

<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<ds:Keyname>Alice Malice</ds:Keyname>

</ds:KeyInfo>

<CipherData>

<CipherValue>6tbB9HG4VQbnj7567Gh...</Ciphervalue>

</CipherData>

</EncryptedData>

</PaymentInfo>

Fig. 8.15 XML encryption.
(a) The original XML document; (b) The document with the CreditCard element encrypted.
Only part of the CipherValue element is shown here.

8.4.5 XML Security

Just as S/MIME offers a set of extensions to MIME which make it possible to ensure
security of MIME-encoded data by encryption or by adding digital signatures, so a
set of extensions for similar purposes have been defined for XML. XML encryption
is described in reference [269], and XML signatures in [270].

Encryption can be applied to entire XML documents or individual elements
within these documents. The element to be encrypted is replaced by an
EncryptedData element, as illustrated in Figure 8.15(b), where the original docu-
ment is as shown in Figure 8.15(a). The EncryptedData element contains:

• A CipherData element whose content is the value of the encrypted element in
base64 encoding or a reference to an external document containing the encrypted
data. Optionally, a reference to the source of the original cleartext, such as the
name of the element in the cleartext document or a URI referring to the docu-
ment, may also be included.

• An optional EncryptionMethod element, containing details of the encryption
algorithm used, such as the identity of the algorithm, the size of the keys and
so on. The identity of the algorithm is given by referring to a standard URI, as

270 8 Protocol Encoding

defined in [269]. For example, the URI in Figure 8.15 is associated with AES
using a 128-bit key and CBC encoding of consecutive blocks of data.

• An optional ds:KeyInfo element giving details of the encryption key(s) used.
Keys may be specified by referring to the name of a key agreed with the recipient
of the document, by passing an encrypted version of the key or by specifying a
technique for key agreement, such as the Diffie-Hellman protocol discussed in
Section 6.5.

• An optional EncryptionProperties element, giving other properties of the
encrypted data, such as a timestamp.

If the optional pieces of information are not included, the recipient is assumed to
have pre-knowledge of them.

The application of digital signatures to XML documents is complicated by the
need to bring the document into a standard form which is used by both the sender
when applying the signature and the recipient when checking it. This is not entirely
trivial, since the namespaces used in an XML document may change as the doc-
ument passes through the network. The process of bringing the document into a
standard form is known as canonicalisation. The actual signature may envelop the
element to be signed, be enveloped within the element or refer to a sibling element in
the same document or elsewhere via a URI. An example can be seen in Figure 8.16.
As in the case of encryption, the algorithms used for producing the signature, pro-
ducing the message digest, performing canonicalisation and so on are described by
reference to a standard URI, specified in [270]. This example uses an RSA-based
signature with SHA-1 message digest (often known as a PKCS #1 signature [248]),
and uses the standard C14N canonicalisation algorithm which is described in [266].
The public key used for the RSA algorithm is here explicitly included. A large num-
ber of alternative algorithms and techniques for key transport are described in [270].

Further Reading

There is very little general literature on the principles of protocol encoding, but
there are innumerable specific examples of PDU encodings which you might like
to study – or which you will need to study if you want to implement a particular
protocol. Consult the list of protocols in the references at the end of this book!

In this book we have not considered the Physical layer of the OSI Reference
Model in any detail. However, the question of how to code data in the Physical
layer is an important one, and there is a large body of literature on the subject,
under the general headings of Data Transmission and Coding Theory. This covers
areas such as analogue and digital representations of data and their sensitivity to
errors. Books on transmission technologies and media, such as radio-, cable- and
fibre optic-based systems, often deal with Physical layer encoding as well. Some
good general reviews can be found in references [87, 108].

Exercises 271

<SignatureId="AliceSig"xmlns="http://www.w3.org/2000/09/xmldsig#"/>

<SignedInfo>

<CanonicalisationMethod

Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

<Reference URI="http://www.maliceworks.org/alice/pay23.xml">

<Transforms>

<Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

</Transforms>

<DigestMethod Algorithm=http://www.w3.org/2000/09/xmldsig#sha1"/>

<DigestValue>jkI3yzskruB5af2u2Aiaklp4RTo=</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>MOOcow34AAptathiR=...</SignatureValue>

<KeyInfo>

<KeyValue>

<RSAKeyValue>

<Modulus>xa7SEU+...</Modulus>

<Exponent>AQAB</Exponent>

</RSAKeyValue>

</KeyValue>

</KeyInfo>

</Signature>

Fig. 8.16 A detached XML signature

Exercises

8.1. Write a computer program which can perform bit stuffing and unstuffing on
HDLC frames. (An alternative exercise would be to design a VLSI chip which could
perform the same functions.) Try to make your implementation as efficient as possi-
ble. When you have completed it, measure how fast it runs, in terms of the number
of bits of data which can be stuffed or unstuffed per second.

8.2. The following two bit sequences are received (after removal of bit stuffing)
by a system which uses the HDLC protocol with the standard 8-bit encodings for
the address and control fields, and the 16-bit CRC-CCITT frame checksum. The
leftmost bit in each sequence is the first bit to be received. The individual octets of
the frame have been transmitted according to the usual HDLC convention, with the
least significant bit first.

01111110 11000000 01010001 01011100 10000000 01111110

01111110 11000000 00111110 11000010 11001010 00001010
11000011 00101001 01111110

What HDLC PDUs have been received?

8.3. A certain computer system represents data in the form of binary trees, which are
represented by a structure with pointers, such that each element in the tree contains a

272 8 Protocol Encoding

value, a pointer to the left sub-tree below this element, and a pointer to the right sub-
tree below this element. If the relevant sub-tree is not present, the pointer nil is used.
Propose a definition in ASN.1 of the type of such trees, if each value is a composite
value composed of a natural number, a string (not exceeding 20 characters in length)
of characters from the IA5 alphabet, and an optional sequence (of arbitrary length)
of signed integers.

8.4. Some computer networks can experience a security problem due to password
sniffing – listening to the passing traffic until a recognisable login sequence contain-
ing a password is transmitted from one system to another. Consider how encryption
could be introduced into the system to combat this problem:

1. In the Data Link Layer, if the HDLC protocol is to be used.
2. In the Presentation Layer, if traffic between the users and the remote computers

is to be transmitted by use of an Application Layer protocol which describes the
data in ASN.1.

Note: To solve this problem, you will need to consider carefully exactly how much
of each PDU needs to be encrypted, if encryption takes place in the layer considered,
and what effect the alternatives have on the speed and efficiency of the protocol.

8.5. The following data structures described in ASN.1 are a simplified version of
some of those used in the ISO/ITU-T directory, whose functions have been intro-
duced in Chapter 7:

Name ::= RDNSequence
RDNSequence ::= SEQUENCE OF RelativeDistinguishedName
RelativeDistinguishedName ::= SET OF AttributeValueAssertion
AttributeValueAssertion ::= SEQUENCE {AttributeType,AttributeValue}
AttributeType ::= OBJECT IDENTIFIER
AttributeValue ::= ANY

These definitions are supplemented with the following association between the
actual OBJECT IDENTIFIERs used to identify the AttributeTypes and the actual
types of the corresponding AttributeValues:

Attribute OBJECT IDENTIFIER Type of AttributeValue
commonName ds attributeType 3 caseIgnoreString SIZE(1..64)
surname ds attributeType 4 caseIgnoreString SIZE(1..64)
countryName ds attributeType 6 PrintableString SIZE(2)
localityName ds attributeType 7 caseIgnoreString SIZE(1..128)
stateOrProvinceName ds attributeType 8 caseIgnoreString SIZE(1..128)
streetAddress ds attributeType 9 caseIgnoreString SIZE(1..128)
organizationName ds attributeType 10 caseIgnoreString SIZE(1..64)
organizationalUnitName ds attributeType 11 caseIgnoreString SIZE(1..64)
title ds attributeType 12 caseIgnoreString SIZE(1..64)
description ds attributeType 13 caseIgnoreString SIZE(1..1024)
telephoneNumber ds attributeType 20 caseIgnoreString SIZE(1..32)
seeAlso ds attributeType 34 RDNSequence

Exercises 273

The type caseIgnoreString is defined as CHOICE{T61String, PrintableString}.
The T61 character set is the one used for Teletex transmission, and includes most of
the non-Cyrillic characters used in European languages. The Printable character set
is the set of upper and lower case letters of the English alphabet, together with the
decimal digits, punctuation marks (’()+,-./:=?) and the character Space.

A person is identified by a Name which defines relevant attributes of the per-
son concerned. This must contain the attributes commonName and surname, and
may optionally contain the attributes description, seeAlso, and telephoneNumber.
An organizationalPerson is identified by the same attributes as a person, possibly
with the addition of the attributes localityName, stateOrProvinceName, streetAd-
dress, organizationalUnitName and title.

Give an example of an ASN.1 value which could be used as a Name for a person.
Then give an example for an organizationalPerson.

8.6. In the text, it is stated that the plaintext message part of a multipart signed
S/MIME entity must be transferred using an encoding which ensures that the mes-
sage will not be altered during the transfer. Explain why this requirement is neces-
sary. Under which circumstances would quoted-printable be a suitable transfer
encoding for such messages?

8.7. With the rapidly increasing use of the Internet, there is a good deal of con-
cern that it will soon run out of bandwidth. One factor which affects this is the
efficiency of the protocols used to transfer information, where by efficiency we here
understand the number of bits of useful information transferred divided by the total
number of bits transferred.

In this exercise, you are to consider the efficiency of the SMTP protocol, based
on the example shown in Figure 8.4. First, work out the efficiency taking only the
exchanges at the application level into account, assuming that the entire text of Al-
fred Bones’ message to William Snodgrass (starting “Here are the secret plans...”)
contains 192 ASCII characters, and that the addresses, embedded mail headers and
other details are exactly as shown in the figure. Then repeat the exercise assuming
the message contains 4192 characters.

How few bits are required to represent English texts of respectively 192 and
4192 characters? How few bits are required to express the command (HELO, MAIL,
RCPT,...) and response (250, 354, 221,...) codes used in the protocol? How many
bits are in fact used for these purposes?

Now consider what is going on in the layers below the application layer, and
include the effect of these layers in your calculation. Suppose the protocol stack
uses TCP in the Transport layer, IPv4 in the Network layer and 100 Mbit/s Ethernet
in the Data Link and Physical layers. You may assume that TCP is used as follows:

1. that the TCP connection between the client and server is already set up when the
messages shown in the figure are sent.

2. that the receiving TCP entity sends an acknowledgment in response to each data
PDU received.

3. that each message from client to server or vice versa is sent in a single TCP PDU.
(This also means that the actual text message is sent as a single PDU.)

274 8 Protocol Encoding

4. that no errors occur, so retransmission is unnecessary.

At the IP level, you may assume that each TCP PDU is dealt with separately, that
segmentation is used to ensure that each IP PDU can fit into the payload of a
100 Mbit/s Ethernet PDU, and that the IP header consists of the basic header, to-
gether with segmentation information if segmentation is used. You will need to look
up the details of the header sizes and maximum payload sizes, if you do not know
them.

With all these assumptions, how many bits have to be transmitted in order to
complete transmission of Alfred Bones’ mail in the two cases considered previ-
ously, where the body of the mail contains 192 characters and 4192 characters re-
spectively?

8.8. Harry the Hacker & Co. want their business cards to include both the home
address and the business address of their employees. Suggest how the XML schema
defined in Figure 8.12 should be modified to describe buisness cards of this type.

8.9. The IT department of the Royal Library of the Kingdom of Wom (which you
will know about from Exercise 7.4) stores information about library books in the
form of XML documents. Each book is identified by a title, one or more authors,
(optionally) one or more editors, a publisher, a publication year and an ISBN num-
ber.

Suggest an XML Schema description of the structure of such a document, and
give an example of an XML document which conforms to this schema.

Chapter 9
Protocols in the OSI Lower Layers

“I lay the deep Foundations of a Wall . . . ”
“Æneid”

John Dryden.

Up to now in this book we have taken an abstract view of protocols. The time has
now come to look at some more concrete examples. We shall do this by presenting a
series of protocols which are in common use for data communication, and by giving
an analysis of the protocol mechanisms which they make use of. This presentation
will be related to the layers in the OSI Reference Model [133] in which the protocols
belong, and will therefore also illustrate typical features and mechanisms in each
layer. In this chapter, we shall look at the lowest four layers of the Reference Model,
collectively often known as the OSI Lower Layers. These provide services for data
transmission, i.e. transport of data between systems without any consideration for
the meaning of these data. The top three layers, often designated the OSI Upper
Layers, which provide services more oriented towards actual applications of various
kinds, will be considered in the next chapter.

The OSI Lower Layers comprise the Physical, Data Link, Network and Transport
layers of the OSI Reference Model. The aim in all these layers is to provide data
transmission services of increasing reliability and scope:

Physical Layer: Bit transmission between systems which are directly connected
via a medium.

Data Link: Block transmission between systems which are directly connected
via a medium.

Network: Block transmission between systems connected via arbitrary networks,
possibly composed from sub-networks.

Transport: Block transmission on an end-to-end basis, such that the properties
of the underlying network(s) are hidden.

The Physical Layer protocols are largely concerned with signalling in physical me-
dia, and therefore lie outside the scope of this book. The interested reader is referred
to one of the many excellent texts on data transmission which are available. We shall

275

276 9 Protocols in the OSI Lower Layers

consider the remaining layers in turn, taking typical examples of protocols from the
layer concerned and using a standard scheme for describing each of them.

9.1 Data Link Layer

9.1.1 Connection-mode

Connection-mode services are favoured within public networks, where the historical
influence of the telephone system is very obvious. Thus the typical connection-mode
protocols found at this level are link protocols for use over point-to-point links of
the type found in the digital or analogue telephone system. In the latter case, suit-
able modems must be used in the physical layer so that digital data can be sent in
analogue form over the physical link.

In fact, although we here speak of point-to-point links, the physical link may well
have several parties attached to it, in a so-called multi-drop configuration, but in
the connection-mode protocols in common use a given instance of communication
usually only involves one sender and one receiver. Thus the general requirement is
for the data link protocol to offer multiplexing of the physical link. As we have seen
in Section 4.5.1, multiplexing may be based on

Centralised control, where one of the parties has responsibility for allocating the
shared service to the participating senders.

Distributed control, where all parties are placed on an equal footing.

In the context of connection-mode data link protocols, the party who initiated estab-
lishment of the connection is often known as the primary part, while the other party
(or parties, in the case of a multi-drop configuration) are known as secondaries. If
the protocol has centralised control, the primary part is the party which exercises
the control; it is allowed to initiate data transmission and control functions, whereas
the secondary can only respond to the primary.

The example which we shall consider is the ISO High-level Data Link Control
(HDLC) protocol. This has one of the widest ranges of applicability, as it can be
operated in three modes, reflecting different styles of operation of the link:

1. Normal response mode, for communication between a primary and one or more
secondaries, where the primary has the full responsibility for control of the link,
and a secondary may only send to the primary in response to being polled by
a command sent by the primary. This is a typical example of a multiplexing
protocol with centralised control.

2. Asynchronous balanced mode, for communication between two parties, a pri-
mary and a single secondary, who may both initiate data transmission and control
functions on an equal footing. Thus both primary and secondary may send com-
mands and responses, and the protocol has distributed control.

9.1 Data Link Layer 277

Secondary Secondary

Primary

Secondary Secondary

Primary Secondary

Fig. 9.1 Data link configurations.
Above: Simple point-to-point data link; Below: Multi-drop configuration with several secondaries.

3. Asynchronous response mode, for communication between a primary and one
or more secondaries, where only the primary may perform control functions such
as error recovery and disconnection, but where the secondary may transmit data
DPDUs as responses without being explicitly polled by a command from the
primary.

Several other closely-related protocols are also in common use. For example, the
ANSI standard ADCCP is more or less identical to HDLC, while ITU-T’s Bal-
anced Link Access Protocol (LAP-B) (used at the data link level of X.25) and
the commercial Synchronous Data Link Control (SDLC) protocol are both more
or less subsets of HDLC. The connection-mode LAN Logical Link Control proto-
col, ISO/IEEE LLC Type 2 [151], is also very similar to the asynchronous balanced
mode of HDLC.

Protocol example: HDLC (ISO4335) [131].
Service provided: Connection-mode point-to-point full- or half-duplex code

transparent sequence preserving data transmission.
Assumed underlying service: Physical service permitting full- or half-duplex

synchronous transmission of bits.
Connection phase: Two-way exchange connection establishment.
Data transfer phase: Two-way simultaneous (in balanced mode) or alternating

(in other modes) window protocol, using sequence numbers counted modulo
8 (optionally, modulo 128). Positive acknowledgments separate (RR or RNR
DPDU) or piggy-backed on data DPDUs in reverse direction. Go-back-n retrans-
mission initiated by negative acknowledge (REJ DPDU). Selective retransmis-
sion initiated by optional selective reject mechanism (SREJ DPDU). Broadcast
from primary to all secondaries.

Disconnection phase: Two-way exchange protocol for explicit disconnection ini-
tiated by primary part. Abort if secondary part becomes inoperative, causing
emission of Disconnect Mode (DM) DPDU.

Other features: Two-way exchange XID (eXchange IDentifier) sub-protocol for
discovery of other station addresses and properties.

278 9 Protocols in the OSI Lower Layers

Two-way exchange TEST sub-protocol for test of stations.
Coding: PDUs delimited by flag fields, with bit stuffing of the content of the PDU

to give code transparency with respect to flags. CRC-CCITT (16 bit) or CRC-32
(32 bit) block checksum. Ad hoc binary coding of all fields in DPDU (Table 8.2).

Addressing: n-octet address (default: n = 1) identifying the party who sends (or
is requested to send) the response, regardless of which party sends the frame un-
der consideration. Thus in Normal or Asynchronous response modes, the address
always identifies the secondary, even if the primary is the actual sender. In Bal-
anced mode, the address identifies the (intended) responder, which may be either
the primary or secondary.
In each octet, only the 7 most significant bits represent the actual address; a
least significant bit with value 1 indicates the last octet in the address. Address
1111111 indicates broadcast from primary to all secondaries, intended for trans-
mitting status messages not requiring a response1.

Fault tolerance: Corruption of all types of PDU. Loss or duplication of data
PDUs. Not tolerant to floating corpses, but these are unlikely since no alternative
routes are available between the communicating parties.

9.1.2 Connectionless-mode

Connectionless-mode data link protocols are typically preferred in private systems,
such as local area networks, and the principal examples of this type of protocol are
LAN protocols for use on a bus or ring LAN. Technically speaking, the Data Link
layer in LANs is made up from two sub-layers:

1. The Medium Access (MAC) sub-layer, which offers multiplexed access to the
Physical layer transmission facilities of the LAN, in general via a multiplexing
protocol with distributed control.

2. The Logical Link Control (LLC) sub-layer, which, on the basis of an arbitrary
MAC sub-layer service, offers a traditional connectionless-mode or connection-
mode Data Link service between arbitrary systems attached to the LAN.

Here we shall concentrate our attention on the MAC sub-layer. The standard
connectionless-mode LLC protocol, known as the ISO/IEEE LLC Type 1 proto-
col [151], offers no extra functionality, in relation to the standardised LAN MAC
sub-layer services, except an extra level of multiplexing to allow multiple streams
of data between the same physical systems. As mentioned above, the corresponding
connection-mode LLC protocol, ISO/IEEE LLC Type 2, also described in [151], is
very similar to the asynchronous balanced mode of HDLC.

Protocol example: CSMA/CD Local Area Network (ISO8802.3) [152].

1 Multicast addresses are in principle also allowed, but the protocol does not explain how their use
is supported.

9.1 Data Link Layer 279

Table 9.1 IEEE and ISO standardised LAN technologies

IEEE ISO Technology
802.3 8802-3 Carrier Sense Multiple Access/Collision Detect (CSMA/CD)
802.5 8802-5 Token Ring

— 8802-6 Distributed Queue Dual Bus (DQDB)
802.9 8802-9 Integrated Services (IS) LAN

802.11 8802-11 Wireless LAN
802.12 8802-12 Demand-priority Access
802.15 — Wireless Personal Area Networks (WPAN)
802.16 — Fixed Broadband Wireless Access (FBWA)

Service provided: Connectionless-mode point-to-point or multicast full duplex
code transparent data transmission.

Assumed underlying service: CSMA/CD LAN Physical Layer (ISO8802.3).
Connection phase: None.
Data transfer phase: Unacknowledged data transfer.
Disconnection phase: None.
Other features: Statistical time-division multiplexing with distributed control.

Collision resolution by random wait with truncated binary exponential backoff.
Coding: Start of DPDU marked by delimiter field. CRC-32 block checksum. Ad

hoc binary coding of all fields in DPDU.
Addressing: 16-bit or 48-bit flat addressing. Single-station or group addressing.
Fault tolerance: Corruption of data PDUs.

A number of other LAN MAC protocols, which are described in other parts of
the ISO8802/IEEE 802 family of standards, are listed in Table 9.1. Notice that sev-
eral numbers are missing in the table. Some of the missing items cover general
topics, such as LAN architecture (802.1), Logical Link Control (802.2) and secu-
rity (802.10); others have just never become standards or have been withdrawn as
obsolete. Many of the standards also come in several variants, for different Physical
Layer data rates or different physical media (or both). This is particularly noticeable
for the CSMA/CD [152] and the Wireless LAN [155] technologies.

The Token Ring protocol [154] the FDDI (Fibre Distributed Data Interface) pro-
tocol [171] and the now obsolete Token Bus protocol [153] use token-based control
of access to send on the medium, following the general principles sketched in Exer-
cise 4.10. The differences largely reflect the different physical media used in these
types of LAN:

Token Bus: Coaxial cable bus, carrying data at 1, 5 or 10 Mbit/s. The token is
in this case passed round a logical ring connecting each station with its logical
successor – not necessarily its physical neighbour.

Token Ring: Physical ring based on point-to-point connections between succes-
sive stations, using twisted-pair or other cables carrying data at 1, 4 or 20 Mbit/s.

FDDI: Physical ring based on point-to-point connections between successive sta-
tions, using fibre optic technology to carry data at 100 Mbit/s.

280 9 Protocols in the OSI Lower Layers

9.2 Network Layer

9.2.1 Connection-mode

Connection-mode network services are, as in the case of the Data Link layer, pre-
ferred in public networks. In addition to having the basic routing functionality re-
quired by the OSI Reference Model, they offer a high degree of reliability. This
is essentially achieved by duplicating some of the functions, such as the window
mechanism for sequence and flow control, which are found in the Data Link layer,
so that the same functionality is made available on a network-wide basis rather than
just on a neighbour-system basis.

Protocol example: ITU-T X.25 PLP (Packet-level Protocol) [129].
Service provided: Connection-mode point-to-point full duplex code transparent

sequence preserving data transmission, with facilities for network reset (reset-
ting a single connection) and restart (clearing all non-permanent connections and
resetting permanent connections).

Assumed underlying service: Service provided by ITU-T X.25 LLP (Link-level
Protocol), essentially the same as the asynchronous balanced mode of HDLC.

Connection phase: Two-way exchange connection establishment. Multiplexing
of several network connections onto a single data link connection and corre-
sponding demultiplexing. Selection of Network Quality of Service (NQOS), se-
quence number space, maximum NPDU size.

Data transfer phase: Normal data: Two-way simultaneous window protocol, us-
ing sequence numbers counted modulo 8 (optionally, modulo 128). Positive ac-
knowledgments separate (RR or RNR NPDU) or piggy-backed on data NPDUs
in reverse direction. Optionally, go-back-n retransmission initiated by negative
acknowledge (REJ NPDU). Segmentation and reassembly.
Interrupt data: Two-way exchange protocol for data transfer independent of flow
control (RR/RNR/REJ) for normal data.

Disconnection phase: Two-way exchange protocol for explicit disconnection ini-
tiated by either party. Automatic disconnection after data link exception.

Other features: Two-way exchange Reset sub-protocol for resetting a single con-
nection. Two-way exchange Restart sub-protocol for clearing all non-permanent
connections and resetting all permanent connections.

Coding: Ad hoc binary coding of all fields in NPDU.
Addressing: Partitioned addressing in accordance with ISO8348 [141]. Single-

station addressing only.
Fault tolerance: Loss or duplication of data NPDUs.

9.2 Network Layer 281

9.2.2 Connectionless-mode

Connectionless-mode network protocols are used to give the necessary routing func-
tionality required in the Network layer without the overhead required by connection-
mode protocols. There are two well-known protocols of this type, with identical
functionality but with different encodings of the NPDU: The Internet/DoD Internet
Protocol (IP) [210], which is the dominant network protocol in the Internet commu-
nity, and the ISO Internet Protocol [142]. As the use of the term internet implies2,
these protocols are specifically designed for data transfer through a system of inter-
connected networks, which may have different properties with respect to maximum
PDU size, security, reliability and so on. Thus the protocols contain features which
allow for this, such as (re-)segmentation, route recording and source routing.

Protocol example: Internet Protocol (IP), version 4 [210].
Service provided: Connectionless-mode point-to-point or multicast full duplex

code transparent data transmission.
Assumed underlying service: Connection-mode or connectionless-mode Data

Link service.
Connection phase: None.
Data transfer phase: Unacknowledged data transfer. Segmentation and reassem-

bly. Optional checksum for PCI fields of NPDU.
Disconnection phase: None.
Other features: NPDU lifetime control via “Time-to-live” counter in PDU. Traf-

fic priority (16 levels). Optional route recording. Optional source routing. Error
reporting via separate ICMP protocol if data NPDU is discarded. Optional spec-
ification of security requirements.

Coding: Ad hoc binary coding of fixed fields in NPDUs, with TLV encoding of
optional fields.

Addressing: Partitioned addressing. Single-station or group addressing.
Fault tolerance: Corruption of PCI of NPDUs if optional checksum is used.

Note that, in contrast to the ISO Internet protocol, where error reporting after discard
of NPDUs is an integral (though optional) part of the protocol, it is in IP mediated
by the Internet Control Message Protocol (ICMP) [211]. This is a separate protocol
which also provides a number of other administrative functions, including indication
of network congestion, exchange of timestamp information, automatic echo to check
for liveness of a given destination system, and facilities to collect information about
given destinations.

2 Don’t get confused: internet is a general term used for systems of interconnected networks, as
well as being the common name for a specific network system, the Internet, and its associated suite
of protocols.

282 9 Protocols in the OSI Lower Layers

9.2.3 Network Layer Security

After several attempts to introduce security in the Network layer in an ad hoc man-
ner, a rapidly increasing number of security failures in the Internet at the start of the
1990s led to the development of more integrated solutions to the problem. In the
Network layer, traffic passing through the network is exposed to a number of threats
which can be exploited by intruders, including:

• Eavesdropping (at this level often called packet sniffing), which may expose lo-
gon information, passwords, database contents or other sensitive information to
be used by applications.

• Address spoofing, in which intruders create PDUs with false IP addresses (typi-
cally false source addresses). This can be used to fool applications into accepting
messages in the belief that they come from an authorised source rather than from
an intruder.

To counteract these threats, it is necessary to ensure that the Network Service offers
confidentiality and authentication.

A series of Internet standards [233–241] describe how these facilities can be
added to the service provided by the Internet Protocol, IP, either in version 4 or
version 6. Collectively, these standards are commonly known as IPsec. Three basic
protocols are defined:

Authentication Header (AH) Protocol: [234] Adds a header containing a se-
quence number and a MD5 or SHA-1 MAC, in order to ensure authentication
and integrity of the IP payload. The MAC is calculated over the IP payload (see
below), the Auhentication Header itself, and all the IP header fields which do not
change in transit through the network.

Encapsulation Security Payload (ESP) Protocol: [238] Encrypts the IP pay-
load and adds a header containing a description of the selected encryption algo-
rithm, together with optional authentication information. The encryption covers
the IP payload (see below) and any padding information used to pad the payload
in order (partially) to hide information about traffic flow which could be deduced
from the size of the IP PDU.

Internet Security Association and Key Management Protocol (ISAKMP):
[240] Used to exchange information about encryption and MAC algorithms,
cryptographic keys and other security parameters used in the AH and ESP pro-
tocols. IPsec introduces the concept of a Security Association (SA), which is an
agreement between two parties, say A and B, about which security parameters
to use for traffic in one direction between them. For two-way traffic, an SA is
required for each direction. ISAKMP includes facilities for negotiating the para-
meters of such SAs, including:

• Key agreement using a variety of key agreement protocols, including Diffie-
Hellman [30], an authenticated version of Diffie-Hellman known as Oak-
ley [242], and RSA-based key exchange.

• Key transport using X.509 public key certificates [180].

9.2 Network Layer 283

• Transform specification to define the desired encryption function and its pa-
rameters.

• Digital signature to ensure the integrity and guarantee the origin of the
ISAKMP information.

IPsec offers two basically different modes of operation, known as transport mode
and tunnel mode respectively. A given SA will work in one of these modes, which
is selected when the parameters of the SA are agreed upon. The choice of mode
dictates the nature of the payload which is protected by the AH or ESP protocol:

Transport mode: The payload is essentially the Transport layer PDU carried as
data in the IP PDU. When IPsec is used together with IPv4, the payload includes
all the data which follow the IP header. With IPv6, it also includes any IPv6
extension headers which are present.

Tunnel mode: The payload is an entire IP PDU which is embedded as data within
an outer IP PDU for transfer through the network. Thus if AH is used, the entire
inner IP PDU (including all its header fields) is authenticated; if ESP is used,
the entire inner IP PDU is encrypted and optionally authenticated. Typically, the
inner PDU is embedded when it reaches a firewall or secure router at the bound-
ary of the (supposedly secure) originating network or sub-network. The entire
(inner+outer) PDU is then sent to a corresponding firewall at the boundary of
the destination network, where the inner PDU is extracted and sent on to its fi-
nal destination. The ’tunnel’ through which the inner PDU is passed is the link
between the two networks, on which the IPsec protocols are used to protect the
PDU from manipulation by intruders. This is illustrated in Figure 9.2.

Gateway
Secure

Gateway
Secure

IP body
IP header

Source Destination

Outer IP header
IP body

IP header
Embedded

IP PDU

Fig. 9.2 IPsec tunnel mode. Just as the train is protected from view when it is in the tunnel, so
the inner PDU is protected by the ESP or AH header when it is embedded in the outer PDU for
transfer between two secure systems over an insecure link.

284 9 Protocols in the OSI Lower Layers

Table 9.2 ISO Transport Quality of Service.

Class Component(s)
Speed Delay in establishing connection.

Throughput (octets/unit time).
End-to-end transit delay for a TSDU.
Delay in releasing connection.

Accuracy Probability of failure in establishing connection, due to misconnection, refusal or
excessive delay.
Residual Error Rate (Section 3.2.4).
Resilience of connection (probability of unrequested disconnection).
Probability of transfer failure, i.e. failure to meet the specified throughput, trans-
fer delay or Residual Error Rate values.
Probability of failure in releasing connection.

Protection Protection against passive monitoring.
Protection against modification, replay, addition or deletion.

Priority Priority for maintaining the requested QOS if the service provider has to degrade
the service for some users.

9.3 Transport Layer

9.3.1 Connection-mode

The OSI connection-mode Transport Service (COTS) [137] is intended to offer re-
liable data transfer (and the associated control) on an end-to-end basis, thus in prin-
ciple completely hiding the topology, reliability and other properties of the network
from the users of the Service. Since it also intended to work over most common
types of Network Service, including both connection-mode and connectionless-
mode ones, the task of hiding the Network Service’s properties is quite a difficult
one. The ISO/OSI solution is to use different protocols, depending on the proper-
ties of the network. There are in fact five OSI Transport Protocols, known as ISO TP
Class 0 (the simplest) to Class 4 (the most complex), where the ones with the largest
numbers are for use over Network Services with the worst properties. In this context,
poor networks are generally taken to include (by definition) all connectionless-mode
Network Services, such as those based on the Internet Protocol. Most LAN-based
systems offer this type of Network Service, and TP Class 4 is therefore commonly
used in such systems. We shall only consider the two extreme classes here.

The actual choice of protocol is not directly made by the user of the Transport
Service, but by the Transport entity within the Transport layer. In practice, many
Transport entities only have an implementation of one of the classes, but in cases
where there are several classes available, the choice is made on the basis of the
Quality of Service (QOS) agreed by the service users when the Transport connec-
tion is established, in relation to the QOS of the underlying Network Service. The
Transport QOS describes a variety of aspects of the service required, as shown in
Table 9.2. Although the figure specifically refers to the Transport layer, a similar set
of components is used to describe the QOS in other OSI layers.

9.3 Transport Layer 285

Table 9.3 Timers in ISO Class 4 Transport Protocol.

Time Timer name Significance
T1 Local retransmission Maximum time the local T-entity will wait for acknowledge-

ment before retransmitting a TPDU.
R Persistence Maximum time the local T-entity will continue to retransmit a

TPDU that requires acknowledgement.
L PDU lifetime Maximum time between initial transmission of a TPDU and re-

ceipt of any acknowledgement concerning it.
W Window Maximum time a T-entity will wait before retransmitting up-to-

date information about receive window size and position.
I Inactivity Maximum time that a T-entity will permit inactivity. If no TP-

DUs are received within this time, the connection will be bro-
ken.

Protocol example: ISO TP0 (ISO8073, Class 0) [138].
Service provided: Connection-mode point-to-point full duplex code transparent

sequence preserving data transmission.
Assumed underlying service: Network service in ‘Class A’: acceptable error

rates for both indicated network errors (signalled by the network service by N-
RESET indication or similar) and residual (non-indicated) errors.

Connection phase: Two-way exchange connection establishment. Negotiation of
Transport Quality of Service (TQOS), sequence number space, maximum TPDU
size.

Data transfer phase: Two-way simultaneous window protocol, using sequence
numbers counted modulo 128 (optionally, modulo 231). Positive acknowledg-
ments separately (AK TPDU) or piggy-backed on data (DT TPDU) in reverse
direction. Segmentation and reassembly.

Disconnection phase: Automatic disconnection following detection of network
disconnection (N-DISCONNECT.ind) or network reset (N-RESET.ind)3.

Other features: —
Coding: Ad hoc binary coding of fixed fields in TPDUs, with TLV encoding of

optional fields (‘parameters’) (Table 8.3).
Addressing: Hierarchical addressing. T-address formed by concatenating

T-selector onto N-address.
Fault tolerance: Loss or duplication of data (DT TPDUs) or acknowledgments

(AK TPDUs).

Whereas the ISO Class 0 protocol provides minimal functionality, and is there-
fore only suitable for use when the underlying network is comparatively reliable,
the Class 4 protocol is designed to be resilient to a large range of potential disasters,
including the arrival of spurious PDUs, PDU loss and PDU corruption. To ensure
this degree of fault tolerance, the protocol uses a large number of timers, whose
identifications and functions are summarised in Table 9.3. The persistence timer is

3 Network restart is assumed to give rise to N-DISCONNECT.ind on all connections.

286 9 Protocols in the OSI Lower Layers

only conceptual, as R is equal to T 1 · (N−1), where N is the maximum number of
attempts to retransmit a PDU, as illustrated in Figure 4.9. The significance of T 1, the
local retransmission time, and L, the maximum PDU lifetime, have been discussed
in Chapter 4. The window timer is used to ensure that at least some kind of PDU
(usually an AK TPDU) is sent every W time units, even if no ‘real’ traffic is being
generated. If no PDUs at all arrive within an interval I, the Network connection is
assumed to be broken. Thus the inactivity timer protects against unindicated failures
of the network.

Protocol example: ISO TP4 (ISO8073, Class 4) [138].
Service provided: Connection-mode point-to-point full duplex code transpar-

ent sequence preserving normal data transmission, together with expedited data
transmission without guarantee of sequence preservation.

Assumed underlying service: Network service of arbitrary quality, even ‘Class
C’: unacceptable error rates both for indicated network errors and residual (non-
indicated) errors.

Connection phase: Three-way handshake connection establishment. Multiplex-
ing of several transport connections onto a single network connection and cor-
responding demultiplexing; identification of individual connections by unique
pairs of references. Splitting of a transport connection over several network con-
nections and corresponding recombining. Negotiation of Transport Quality of
Service (TQOS), sequence number space, maximum TPDU size, use of check-
sum.

Data transfer phase: Normal data: Two-way simultaneous window protocol, us-
ing sequence numbers counted modulo 128 (optionally, modulo 231). Positive ac-
knowledgments separately (AK TPDU) or piggy-backed on data (DT TPDU) in
reverse direction. Dynamic window sizing by credit mechanism on each connec-
tion independently of the others, with credit information passed in AK TPDUs.
Segmentation and reassembly. Concatenation and separation.
Expedited data: Two-way simultaneous window protocol, using sequence num-
bers counted modulo 128 (optionally, modulo 231). Positive acknowledgments
separately (EA TPDU) or piggy-backed on expedited data (ED TPDU) in reverse
direction. Segmentation and reassembly.
Checksum in all TPDU types if agreed during connection establishment. Recov-
ery after network failure (N-DISCONNECT or N-RESET).

Disconnection phase: Two-way exchange protocol for explicit disconnection ini-
tiated by either party.

Other features: Use of timers as indicated in Table 9.3.
Coding: Ad hoc binary coding of fixed fields in TPDUs, with TLV encoding of

optional fields (‘parameters’) (Table 8.3).
Addressing: Hierarchicaladdressing.T-addressformedbyconcatenatingT-selector

onto N-address.

9.3 Transport Layer 287

Fault tolerance: Loss, duplication or spurious arrival of data or control TPDUs.
Corruption of TPDUs if optional checksum is used. Network service failure (N-
DISCONNECT or N-RESET) during any phase4.

A similar functionality to ISO TP4 is offered by the Internet/DoD Transmission
Control Protocol (TCP) [212]. Two important differences are that TCP supports a
stream oriented service, so window size and credit are measured in octets rather than
in TPDUs, and that the ISO Expedited data concept, using separate high priority
TPDUs, is replaced by a concept of urgent data, which can be included as part
of ordinary TPDUs. TCP does not have separate types of TPDU for control and
data traffic, but incorporates control functions such as connection establishment and
release in the form of flags which can be set in the TPDU.

Protocol example: Internet Transmission Control Protocol (TCP) [212].
Service provided: Connection-mode point-to-point full duplex code transparent

sequence preserving stream oriented data transmission for normal and urgent
classes of data.

Assumed underlying service: Connectionless-mode network service.
Connection phase: Three-way handshake connection establishment.
Data transfer phase: Normal data: Two-way simultaneous stream oriented win-

dow protocol, with octets identified by sequence numbers counted modulo 232.
Positive acknowledgments piggy-backed on data TPDU in reverse direction. Dy-
namic window sizing with window size up to 216 by credit mechanism on each
connection independently of the others, with credit information (measured in
octets) passed in TPDUs. Segmentation and reassembly.
Urgent data: Up to 216 octets passed in separate field at head of data area of
TPDU.
1’s-complement checksum in all TPDUs covers TPDU header and data.

Disconnection phase: Two-way exchange protocol for explicit termination of
data flow in one direction; complete disconnection when flow in both directions
is terminated.

Other features: Use of timers for Local Retransmission, PDU Lifetime and Per-
sistence (denoted ‘User Timeout’), as in Table 9.3. Time-Wait timer is used to
ensure that opposite party receives acknowledgment when closing connection.

Coding: Ad hoc binary coding of fixed fields in TPDUs, with TLV encoding of
optional fields.

Addressing: Hierarchical addressing. T-address formed by concatenating 16-bit
port number onto N-address.

Fault tolerance: Loss, duplication or spurious arrival of TPDUs. Corruption of
TPDUs.

4 Network restart is assumed to give rise to N-DISCONNECT.ind on all connections.

288 9 Protocols in the OSI Lower Layers

9.3.2 Connectionless-mode

Connectionless-mode Transport Protocols are favoured for certain styles of applica-
tion, where there is no requirement for long sequences of data transfers between the
same two parties. For example, the application might involve simple transactions in
which one party sends an enquiry and the other replies to it, but where no single pair
of parties exchange much data. For such purposes, connection-mode protocols will
in general use unnecessarily many resources, and a connectionless-mode protocol is
often preferred.

Protocol example: ISOConnectionless-modeTransportProtocol (ISO8602) [148].
Service provided: Connectionless-mode point-to-point or multicast full duplex

code transparent data transmission.
Connection phase: None.
Data transfer phase: Unacknowledged data transfer. Optional checksum for TP-

DUs.
Disconnection phase: None.
Other features: —
Coding: Ad hoc binary coding of fixed fields in TPDUs, with TLV encoding of

optional fields.
Addressing: Hierarchical addressing. T-address formed by concatenating

T-selector onto N-address.
Fault tolerance: Corruption of data PDUs if optional checksum is used.

The corresponding Internet connectionless-mode transport protocol is known as the
User Datagram Protocol (UDP) [209]. It has the same functionality but a different
encoding.

Further Reading

To find more information about the protocols discussed in this chapter, you should
really look at the original descriptions in the standards, which include full details of
the protocol procedure and encoding. Some information about how to get hold of
the standards can be found in appendix B.

As remarked previously, it lies outside the scope of this book to deal with pro-
tocols in the Physical layer, which are intended to give a service for transmitting
individual bits over a physical medium. However, to get the most out of the lit-
erature which exists on the subject, you should be aware of certain basic ideas.
In practical systems, especially public networks, transmission in the physical layer
is very often divided into two parts: Actual transmission on the medium, between
pieces of equipment known as Data Circuit-terminating Equipment (DCE)s, and
transmission to the DCE from user equipment, known in this context as Data Ter-
minal Equipment (DTE), or the reverse. The DTE-DCE transmission is generally

Further Reading 289

described in terms of an interface, which has four sets of characteristics: mechani-
cal (the physical arrangement of signal and control leads), electrical (the coding of
the bits in terms of voltage changes), functional (the purpose of the various signals
which are exchanged) and procedural (the sequence of events for transmitting data).
Well-known interface standards include RS-232C, RS-449/RS-422, X.21 and the S-
and T-interfaces for the Integrated Services Data Network (ISDN).

Most general texts on data transmission and data networks, deal with the Phys-
ical layer protocols in detail. Good general sources on the lower layers are [58]
and [120]. More specialised texts are available describing particular types of net-
work, such as local area networks (LANs) [121] and ISDN [55].

Chapter 10
Application Support Protocols

“For the fashion of Minas Tirith was such that it was built on seven levels,
each delved into the hill, and about each was set a wall, and in each wall
was a gate. . . . Up it rose, even to the level of the topmost circle, and there
was crowned by a battlement”.

“The Return of the King”
J. R. R. Tolkien.

The OSI Upper Layers comprise the Session, Presentation and Application layers
of the OSI Reference Model. These rely on the Transport Service to give suitably
reliable end-to-end data transfer, where the degree of reliability is specified by the
Transport Quality of Service demanded by the Transport Service user. With this in
mind, the accent in the protocols within the upper layers is less on fault tolerant data
transfer, and more on providing facilities for supporting a wide range of applica-
tions. The layers have the following functionalities:

Session Layer: Dialogue control within a group of two or more application
processes, including the setting of synchronisation marks in the data streams,
and roll-back to these marks.

Presentation Layer: Conversion of data structures into representations accept-
able to the individual application processes on possibly heterogeneous systems.

Application Layer: Direct support for various types of distributed application.

The OSI protocol suite provides protocols which implement all these layers sepa-
rately. The Internet protocol suite, on the other hand, has no separate Session and
Presentation protocols, and their functionality is incorporated to the extent necessary
in the Internet Application Layer protocols.

10.1 Session Layer

The OSI Session Service offers dialogue control in a very general sense. Firstly,
it offers its users (and thus ultimately the applications) the possibility of running
several consecutive dialogues with other parties over the same or different Transport

291

292 10 Application Support Protocols

Time

Time

Connect

Connect Connect

Major
Synch.
point

Disconnect Disconnect

Major
Synch.
point

Minor Synch. points

Major Synch. points

Minor Synch. points

Major Synch. points

}
}

}
}

Dialogue unit Dialogue unit

Activity
Start

Activity
Interrupt

Activity End
(=Major Synch.)

Activity
Resume

Activity

Fig. 10.1 Dialogue units and activities in the OSI Session service.
Above: Dialogue units with major and minor synchronisation points; Below: An activity consisting
of several dialogue units.

connections, of controlling whether half or full duplex transmission should be used,
of dividing the dialogue up into logically separate units, known as dialogue units
and activities, and of setting marks in the data streams associated with such units,
so that the users can resynchronise the dialogue to one of these marks and have it
repeated from there. Two types of mark are distinguished:

1. Major synchronisation points: which are set by a confirmed service, as dis-
cussed in Section 4.3.2, and which logically separate the data stream ‘before’ the
mark completely from the stream ‘after’ the mark.

2. Minor synchronisation points: which are set by an optionally confirmed ser-
vice. This does not give the complete separation offered by a major synchronisa-
tion point, but usually gives the non-initiator enough information for it to be able
to control resynchronisation if required.

In the OSI Session layer, a dialogue unit is a part of a two-party dialogue such that
all communication within it is completely separated from all communication before
and after it. Thus, except in the trivial case where it starts at the establishment of a
connection or ends when the connection is broken, a dialogue unit corresponds to the
period of activity between consecutive Major Synchronisation points. An activity is
an even larger unit, composed of one or more dialogue units. These do not have to
be consecutive, as an activity may be suspended and subsequently resumed on the
same or on another connection. Starting an activity starts a dialogue unit; ending an
activity ends a dialogue unit and sets a major synchronisation point. These concepts
are illustrated in Figure 10.1.

10.1 Session Layer 293

Table 10.1 OSI Session Service tokens
Token Effect if available Effect if unavailable
Data Owner may send data (half duplex),

and be initiator for other services.
Always full duplex,

No limitations on other services.
Major/Activity Owner may be initiator for Major

Synch. point or Activity.
No Major Synch. points or Activities.

Synch-minor Owner may be initiator for Minor
Synch. point.

No Minor Synch. points.

Release
Owner may propose disconnection.
Non-owner may refuse.
(Negotiated release)

Both parties may propose disconnection.
No negotiated release.

Secondly, as already mentioned in Section 4.4.3, the service uses a mechanism
with tokens to control the two users’ access to various facilities. There are four
tokens, each of which may be agreed by the users to be available or unavailable for
the connection when this is set up. The users also agree where the available tokens
are initially to be placed, but may subsequently send them to and fro in order to give
one another access to the facilities concerned. The meaning of the tokens depends
on whether they are available or not, as explained in Table 10.1.

Finally, the service offers several types of data transfer in addition to ordinary
data, with a view to allowing small amounts of data to be sent independently of the
ordinary data, possibly ‘against the rules’ which apply to ordinary data. These extra
data streams are known as:

1. Expedited data: which as usual means data that is guaranteed to arrive not later
than ordinary data sent at the same time.

2. Typed data: which go against the flow dictated by the half-duplex discipline, if
this is used.

3. Capability data: which, unlike ordinary data, can be sent when there is no cur-
rent activity, if activities are used.

The OSI Session Service offers a wealth of facilities, and since all this complex-
ity is often unnecessary (and expensive to implement), the user is given the possi-
bility of selecting which types of facility are wanted: The facilities are grouped into
functional units, each of which is related to a particular concept in the service, such
as the use of resynchronisation, the use of activities or whatever. These functional
units are summarised in Table 10.2. Only the Kernel Functional Unit, which offers
the most basic facilities, is obligatory, while the remaining functional units can be
selected as required.

Protocol example: ISO Connection-mode Session Protocol (ISO8327) [140].
Service provided: Connection-mode point-to-point full- or half-duplex code

transparent normal and expedited data transmission.
Optional facilities for division of data exchanges on a connection into dialogue
units, each of which is logically separated from preceding and succeeding dia-
logue units on the same connection by a major synchronisation point.

294 10 Application Support Protocols

Table 10.2 Services and Functional Units in ISO Session Service (after [139]).

Functional Unit Services

Kernel

Connection establishment
Normal data transfer
Orderly release
User Abort
Provider Abort

Negotiated release
Orderly release
Give tokens
Please tokens

Half-duplex
Give tokens
Please tokens

Duplex (No additional service)
Expedited data Expedited data transfer
Typed data Typed data transfer
Capability data exchange Capability data exchange

Minor synchronise
Minor synchronisation point
Give tokens
Please tokens

Major synchronise
Major synchronisation point
Give tokens
Please tokens

Resynchronise Resynchronise

Exceptions
Provider exception reporting
User exception reporting

Activity management

Activity start
Activity resume
Activity interrupt
Activity discard
Activity end
Give tokens
Please tokens
Give control

Optional facilities for division of data exchanges into activities, which can be
suspended and restarted on the same or a different connection, or can be aban-
doned (thus discarding all transmitted data).
Optional facilities for insertion of marks (synchronisation points) into the data
stream, and rollback (resynchronisation) to previously set marks.
Token-based control of right to send data (if half-duplex service is chosen), to set
marks, to start new dialogue units or activities and to refuse to clear the connec-
tion even though the other party proposes this.

Connection phase: Two-way exchange connection establishment. Negotiation of
Session QOS, maximum SPDU size, available functional units, availability of
tokens and initial placing of available tokens.

Data transfer phase: Normal data: Two-way simultaneous unacknowledged data
transfer if duplex service is chosen; two-way alternating unacknowledged data
transfer if half-duplex service is chosen.

10.2 Presentation Layer 295

Expedited data: Two-way simultaneous unacknowledged data transfer.
Typed data: Two-way simultaneous unacknowledged data transfer.
Capability data: Two-way simultaneous unacknowledged data transfer if duplex
service is chosen; two-way alternating unacknowledged data transfer if half-
duplex service is chosen.

Disconnection phase: Two-way exchange protocol for explicit disconnection ini-
tiated by either party.

Other features: Two-way exchange protocol for major synchronisation points.
Unacknowledged or two-way exchange protocol for minor synchronisation points.
Two way exchange protocol for resynchronisation.
Unacknowledged protocols for start and resumption of activities. Two-way ex-
change protocols for interrupting, discarding or termination of activities.
Unacknowledged protocols for transfer of tokens. Unacknowledged or two-way
exchange protocol for requesting tokens from the current owner.

Coding: TLV coding of all SPDUs.
Addressing: Hierarchical addressing. S-address formed by concatenating

S-selector onto T-address.
Fault tolerance: —

10.2 Presentation Layer

The Presentation Layer is responsible for the conversion of data structures into rep-
resentations which can be used by the application processes on the various systems
in a distributed system. A trivial example of this is the conversion of text strings from
one character code (say ISO649) to another (say EBCDIC), but in OSI systems, all
data structures which can be specified in ASN.1 can be converted into appropriate
locally valid representations.

To reduce the number of conversion functions required in a large heterogeneous
system, the OSI Presentation Layer is based on the use of a common, machine-
independent representation, known as a transfer syntax, for representing data which
are being transferred between systems. This is illustrated in Figure 10.2. This way
of doing things means that, if there are m different types of system, with different
local representations, then each of them only needs to have one conversion function
(to/from transfer syntax) instead of (m− 1). However, it also means that each two
parties who wish to communicate must agree on a suitable transfer syntax, which
must be capable of expressing all the data structures in the universe of discourse
used by the application. The structures in this universe are expected to be described
by an abstract syntax, and the mapping between this abstract syntax and the transfer
syntax is known as the presentation context. In OSI examples, the abstract syntax
will of course normally be given in ASN.1, and the transfer syntax used will usually
be BASN.1.

Protocol example: ISOConnection-modePresentationProtocol (ISO8823)[157].

296 10 Application Support Protocols

P-entity
converts to/from
transfer syntax

P-entity
converts to/from
transfer syntax

R: 00 R: 0 R: 1
32-bit binary
20-char IA5
32-bit binary
32-bit binary

W: FF
5-digit BCD
20-char EBCDIC
8-digit BCD
8-digit BCD

Local
representation
of objects in
universe of
discourse

PPDU

data represented in
transfer syntax

A

P

S

SEQUENCE{
TRANSACTION ::=

type
number
accountid
amount
checksum

[APPLICATION 1]

[APPLICATION 2]
[APPLICATION 3]

BOOLEAN
INTEGER
IA5String
INTEGER
INTEGER }

UNIVERSE OF DISCOURSE

Fig. 10.2 Functioning of the OSI Presentation Layer. The data structures here are specified by an
abstract syntax in ASN.1.

Service provided: Connection-mode point-to-point full- or half-duplex code
transparent normal and expedited data transmission.
Selection of presentation context.
Use of Session layer Activity, Synchronisation point, Resynchronisation, Token
passing, Capability Data, Typed Data and Exception sub-services, whose primi-
tives are passed through the Presentation layer to (or from) the Session layer.

Connection phase: Two-way exchange connection establishment.
Data transfer phase: Normal data: Two-way simultaneous unacknowledged data

transfer if duplex service is chosen; two-way alternating unacknowledged data
transfer if half-duplex service is chosen.
Expedited data: Two-way simultaneous unacknowledged data transfer.

Disconnection phase: Two-way exchange protocol for explicit disconnection ini-
tiated by either party.

Other features: Two way exchange protocol for selection of new presentation
context.

10.3 Application Layer 297

Coding: BASN.1 encoding of all PPDUs.
Addressing: Hierarchical addressing. P-address formed by concatenating

P-selector onto S-address.
Fault tolerance: —

10.3 Application Layer

The OSI Application layer provides direct support for a variety of common applica-
tions in distributed systems. Since it is envisaged that an almost unlimited number
of different applications could be of interest within OSI, and that they would have
widely differing combinations of requirements, the service offered by the Applica-
tion layer is put together from a set of modules, known as Application Service Ele-
ments (ASEs). This structure is illustrated in Figure 10.3. Formally speaking [172],

P

A A
S
O

A
S
O

A
S
O

FTAM
ASE

VT
ASE

JTM
ASE

CCR
ASE

ACSE ACSE ACSE

ASO
A-entity-

invocation
A-entity-invocation

P-ENTITY

PSAP PSAP

Fig. 10.3 Structure of the OSI Application Layer.

both an ASE and an Application Entity made up of a particular combination of
ASEs are considered as types of object. Each instance of an ASE type is known as
an ASE-invocation and each instance of an Application Entity as an Application-
entity-invocation or AE-invocation. Each AE-invocation is made up of one or more
Application Service Objects, ASOs, each of which is itself composed of one or more
smaller ASOs and/or ASE-invocations.

298 10 Application Support Protocols

Currently, there are two basic ASEs (Association Control Service Element,
ACSE [149], and Remote Operations Service Element, ROSE [169]), and several
more specific ones for useful tasks, such as control of commitment, concurrency and
recovery (CCR), file transfer (FTAM), virtual terminals (VT), job transfer (JTM),
electronic mail (MOTIS/MHS), transaction processing (TP) and so on. Overall man-
agement of OSI systems is also based on the use of application layer protocols.

In the figure, two AE-invocations have been activated. One of these is compar-
atively simple, consisting of a single ASO which is composed of an invocation of
ACSE, together with an invocation of one application-specific ASE for file transfer,
FTAM. The second AE-invocation is more complex, with an ASO made up of two
smaller ASOs, one of them composed of three ASE-invocations and the other of two
ASE-invocations.

We shall not consider all Application Layer protocols in detail here, but will con-
centrate on examples which illustrate various communication patterns in distributed
applications. Roughly speaking, we can divide application protocols up into ones
which support:

1. Point-to-point communication involving only two parties.
2. Communication in which several parties are involved, but where they are organ-

ised in a hierarchical, tree-like manner. This means that they only communicate
with one another pairwise with their neighbours up and down the tree.

3. Communication in which several parties are involved, but where they communi-
cate with one another in an arbitrary, non-hierarchical manner.

10.4 Basic Application Service Elements

Most OSI and ITU-T Application Layer protocols make use of facilities offered by
one (or both) of the basic service elements known as ACSE and ROSE.

10.4.1 Association Control

ACSE [149, 150] (usually pronounced ‘aksee’) offers facilities for setting up and
maintaining associations between two application entity invocations. An association
corresponds to a connection in the other layers, but for technical reasons1 another
term has to be used. The facilities are very simple, permitting the user of ACSE to set
up an association and to release it again. No facilities for data transfer are provided –
they are assumed to be supplied by the other ASEs which are used together with
ACSE. The service and its protocol can be summarised as follows:

1 In the OSI Reference Model, an (N)-connection is defined as being between two (N)-users in the
(N+1)-layer. Since the Application layer is the uppermost layer, there is by definition no ‘(N+1)-
layer’ for its users to be in.

10.4 Basic Application Service Elements 299

Protocol example: ISO ACSE Protocol (ISO8650) [150].
Service provided: Connection-mode pairwise point-to-point facilities for estab-

lishment and release of associations.
Selection of application context.
Abnormal release initiated by service provider or either user.

Connection phase: Two-way exchange protocol for establishment of association.
Data transfer phase: None
Disconnection phase: Two-way exchange protocol for normal release of associ-

ation.
Other features: —
Coding: BASN.1 encoding of all APDUs.
Addressing: A-titles for calling and called entities, together with the P-addresses

derived from these via a suitable directory, are exchanged in the connection
phase.

Fault tolerance: —

10.4.2 Remote Operations

The other basic ISO/ITU-T ASE, ROSE [169], supplements ACSE by offering a
toolkit from which various more complex application protocols can be constructed.
This makes it radically different from most of the other services discussed here,
which offer fixed facilities for specific purposes. Even more radically, whereas most
of our other examples are based on peer-to-peer protocols which consider the partic-
ipants to be equals, ROSE is based on a Client-Server model of a distributed system,
where there is an asymmetric relationship between the participants: The Client can
request the Server to perform some operation, and the Server can send the Client
some result (perhaps merely status information), but not vice-versa.

By suitably combining these two basic elements in ROSE, almost any Appli-
cation Layer protocol can be built up. This includes both synchronous protocols,
where the initiator waits for a response before issuing a new request, and asyn-
chronous protocols, where it is not necessary to wait. As a simple example, let us
consider how ROSE can be used for describing synchronous Remote Procedure Call
(RPC) facilities, of the type introduced in Section 4.3.2. These consist just exactly
of exchanges in which the Client makes a request and the Server sends a response
to this. This is illustrated in Figure 10.4, which shows both a successful and an un-
successful Remote Procedure Call interaction between a Client and a Server. The
actions in the Client and Server in the figure can be considered as elements of the
RPC service. These give rise to activation of the ROSE service for sending Client
requests and Server responses, leading to the protocol elements shown in the central
column of the figure.

In general, the ROSE service allows the Client in its request to INVOKE three
types of operation, known as:

300 10 Application Support Protocols

Client ROSE Protocol elements Server

BeginRPCBinding

EndRPCBinding

RPCCall

RPCCall

(Execution resumed)

(Execution resumed)

(Execution suspended)

(Execution suspended)

INVOKE(BIND)

INVOKE(UNBIND)

INVOKE(OPERATION)

INVOKE(OPERATION)

RESULT

ERROR

RPCInvocation

RPCInvocation

RPCReturn

RPCReturn

(Set up bindings)

(Release bindings)

Fig. 10.4 Using ISO/ITU-T ROSE to implement RPC facilities.

BIND, in which it tells the Server which objects and operations will be referred
to in subsequent invocations.

UNBIND, in which the most recently performed binding operation is annulled.
OPERATION, which is to be understood as meaning any other operation men-

tioned in the currently valid binding.

The Server can give a positive (RESULT) or a negative (ERROR) response to a pre-
vious request from the Client. Finally, either party can REJECT the other’s request
or response, giving a reason for this rejection. All these service elements are uncon-
firmed.

The protocol used by ROSE [170] is trivial: An unacknowledged APDU bearing
suitable BASN.1-encoded data which describe the request or response is sent from
the Client’s to the Server’s side or vice-versa. Since there is a one-to-one mapping
between ROSE service elements and APDUs, the protocol elements (and their cor-
responding APDUs) have the same names as the service elements: RO-INVOKE,
RO-RESULT and so on. This has at times caused some confusion between the ser-
vice and protocol aspects of ROSE, which – it must be admitted – does not fit very
neatly into the usual ISO/OSI pattern of things. We shall refrain from further dis-
cussion of this somewhat philosophical point here.

10.5 Commitment, Concurrency and Recovery 301

10.5 Commitment, Concurrency and Recovery

Many distributed applications have, like the kind of file manipulation supported
by FTAM, a need to ensure reliable access to data from several parallel activities.
Simultaneous access to the same data structures, be they files or whatever, can easily
give the users inconsistent views of the situation.

A classical example is the case of two simultaneous transactions on the same
bank accounts, as illustrated in Figure 10.5. Here, Jones transfers £100 to Smith’s
account and Evans transfers £50 to Jones’ account. An accountant seeing this ex-

Fig. 10.5 Simultaneous trans-
actions on the same accounts.
Initially: Smith = £1000,
Jones = £2000, Evans =
£1500.
What is the final balance on
Jones’ account?

Transaction A Transaction B
Smith:= Smith + 100; Jones := Jones + 50;
Jones := Jones − 100; Evans:= Evans − 50;

ample would presumably imagine that Jones finishes up with £1950 on his account.
However, if you know anything about parallel programming, you probably realise
that there are at least two other possible results, depending on the order in which
the operations are dealt with. The problem is that, for example, to add or subtract
£x from Jones’ account, it is necessary first to read the current balance, then evalu-
ate the new balance and update the balance stored in the account. Consistent results
will only be obtained if Transaction B is prevented from reading Jones’ balance until
Transaction A has completely finished its update of Jones’ account, or vice versa.

In such a situation, we therefore require the individual changes on the stored
balance to be atomic actions. These are actions which are carried out as a whole
or not at all, and which exclude other simultaneous actions which read or modify
the same data, the so-called bound data for the atomic action. This requirement of
mutual exclusion, which is often defined by saying that partial results of a sequence
of operations are not accessible outside the atomic action, is commonly known as
isolation. Evidently, isolation implies a need for serialisation of atomic actions, so
that concurrent actions are in fact performed sequentially.

In the case of bank transactions, we would also want each entire transaction to be
atomic. Otherwise we might, for example, debit Jones’ account for £100, but (due
to some system fault) fail to credit this amount to Smith’s account. This is the kind
of thing which banks try very hard to avoid!

The two examples of atomicity here give rise to three distinct requirements in a
distributed system:

Concurrency control is needed to ensure that simultaneous actions on the same
data (such as Jones’ account) take place in a well-ordered and consistent manner,
ensuring isolation.

Commitment is needed to ensure that groups of related actions (such as entire
transactions) take place as a whole or not at all.

302 10 Application Support Protocols

Recovery is needed to ensure that, if some failure occurs during an atomic ac-
tion, then the atomic action will be able to progress correctly (to completion or
annullment) after the failure has been corrected.

The ISO Commitment, Concurrency and Recovery (CCR) Service Element and
its associated protocol [189, 190] are intended to supply this functionality. They
are based on the idea that a distributed application involves one or more Application
Entities, which initiate atomic actions among one another. These atomic actions may
be hierarchically nested, forming a so-called atomic action tree, as in Figure 10.6.
The figure illustrates a transaction where entity A initiates an atomic action which

Fig. 10.6 An atomic action
tree

A

B C

D E F G

H J

involves B and C. In CCR, A is said to be the (immediate) superior for B and
C, while B and C are said to be A’s (immediate) subordinates. Similarly, B is the
superior for D, C the superior for E, F and G, and E the superior for H and J. The
‘top-level’ superior in the atomic action tree, here A, is known as the master. A
superior initiates an atomic action involving its subordinates and is also responsible
for initiating commitment when the action is assumed to be complete. Note that,
since CCR is basically a point-to-point service, a superior wishing to set up an action
tree with several subordinates (such as B and C for A) must set up the branches one
at a time.

In CCR, the basic commitment mechanism uses a centralised two-phase com-
mit algorithm. This is supplemented by a mechanism for recovery after failure in
the superior or one of the subordinates during commitment of an atomic action, as
discussed in connection with Protocol 16 in Chapter 5. A superior which wishes
to initiate recovery after a failure tells all its subordinates that it has previously or-
dered commitment, and waits for the subordinates to tell it how far they got with the
process of commitment. In the CCR protocol, each subordinate may reply DONE,
indicating that it has completed commitment, or RETRY-LATER, indicating that it is
not yet able to reply, for example because it has lost contact with one of its subor-
dinates. Correspondingly, a subordinate which wishes to initiate recovery tells its
superior that it had offered to commit, and waits for a reply; the superior can then
reply RETRY-LATER or UNKNOWN, where the latter means that no atomic action
exists, so that the subordinate should perform rollback.

Protocol example: ISO CCR Protocol (ISO9805) [190].

10.6 Client-server Systems 303

Service provided: Connection-mode pairwise point-to-point facilities for initiat-
ing an atomic action.
Pairwise point-to-point facilities for commitment of an atomic action, including
facilities for positive (READY) or negative (ROLLBACK) response to commit-
ment request from superior, and for recovery after a failure in the superior or
subordinate.

Connection phase: None (see below).
Data transfer phase: None (see below).
Disconnection phase: None (see below).
Other features: Two-way exchange protocol for starting new branch, involving

two service users, in an atomic action tree at the start of a new atomic action.
Centralised two-phase commit protocol for terminating atomic action by com-
mitment or causing rollback if commitment is unattainable.
Two-way exchange protocol for recovery after a failure during the commitment
procedure.

Coding: BASN.1 encoding of all APDUs.
Addressing: A-titles for the master and for the superior of the current branch of

the action tree are passed to the subordinate during initiation of an atomic action.
Fault tolerance: Failure of any subordinate before commitment. Communica-

tion failure or fail-stop failure of superior or subordinate during commitment
procedure.

Note that there are no connection or disconnection phases in the CCR protocol,
which relies on the ACSE to establish and break associations between a superior
and its subordinates. Moreover, CCR does not itself include data transfer or concur-
rency control; the application using the CCR service is supposed to know which data
are to be bound during a particular atomic action and is supposed to apply some suit-
able method of concurrency control, such as locking, to ensure exclusive access if
required. The ISO CCR service merely offers facilities for ensuring that data trans-
mitted between the start of an atomic action and its completion by commitment or
abort (rollback) are treated appropriately.

10.6 Client-server Systems

A popular paradigm for the construction of distributed systems is to base them on
Client-Server architectures, in which processes acting as Servers offer to perform
services for other processes acting as Clients. We have already seen several simple
examples of this style of operation, such the name servers and process servers dis-
cussed in Chapter 7, and the SMTP example shown on page 252 in Chapter 8, and
we will see several more in the next chapter.

Technically speaking, a server gives its clients the ability to perform a set of op-
erations on an shared abstract datatype (SADT). It is an abstract datatype in the
sense that the client does not need to concern itself with the way in which the data

304 10 Application Support Protocols

structures and procedures are implemented. The client merely sees an abstract in-
terface to the data structure, giving the procedures which are available. Thus the
client-server paradigm is a distributed analogue of the well-known Object Oriented
programming paradigm, where the server is an object. This observation leads natu-
rally to the idea that systems can be constructed from hierarchies of servers, as in
OO programming. Entire operating systems and large distributed systems have been
constructed according to this principle – for example TABS [118], Argus [83] and
Camelot.

10.6.1 Remote Procedure Call

An essential element in distributed systems based on the Client-Server paradigm is
the Remote Procedure Call (RPC) abstraction. This offers an interface which ap-
pears to be identical with an ordinary procedure call, but where the called procedure
may be in another process in the same machine or on a remote system. RPC was
originally defined by Birrell and Nelson [14] as “the synchronous language-level
transfer of control between programs in disjoint address spaces, whose primary
communication medium is a narrow channel”, a definition which stresses three im-
portant properties of RPC:

1. The participants are in different address spaces.
2. There is a (logical) channel which permits transfer of data between the partici-

pants.
3. Transfer of data is associated with transfer of control, as in activation of ordinary

procedures in classical programming languages.

Subsequent work on RPC mechanisms has occasionally deviated from the defini-
tion on other points, for example by providing asynchronous (non-blocking) rather
than synchronous (blocking) transfer of control, while the narrowness of the channel
depends on the technology used, and can obviously be debated.

The semantics of actually executing the procedure may in fact deviate from what
would be expected with a traditional procedure call, since after a failure in a remote
machine it may be impossible to tell whether a message requesting execution of a
procedure has been received and acted upon. Repeating the message may cause the
procedure to be executed more than once; on the other hand, failing to repeat the
message may result in the procedure not being executed at all. It has become con-
ventional to refer to RPC mechanisms as having different call semantics, depending
on what is guaranteed, as follows:

Exactly-once: The system guarantees that the procedure will return a result after
being executed once, just as in a traditional local procedure call.

At-most-once: The system guarantees that the procedure will return a result after
being executed not more than once.

At-least-once: The system guarantees that the procedure will return a result after
being executed one or more times.

10.6 Client-server Systems 305

Client
Stub Stub

Server

Caller Callee

Call message

Return message

Caller Callee

Client Server

Fig. 10.7 Procedure call (above) and Remote Procedure Call (below)

Maybe: The system makes no guarantees about execution of the procedure or the
return of results after a failure.

Exactly-once semantics is unfortunately extremely costly, if not impossible, to
achieve in a distributed system; this may make it difficult to ensure that local and
remote RPC work in the same way. On the other hand, with at-most-once or maybe
semantics there is a risk that the procedure will not be executed at all, while a sys-
tem with at-least-once semantics will possibly execute the procedure several times.
This can be tolerated if the procedure is idempotent, i.e. leads to the same result
regardless of how many times execution is repeated, whereas it is a problem if the
procedure has side effects.

The standard view of a system which uses RPC is shown in Figure 10.7. Both
the calling process (the caller) and the called procedure (the callee) see an interface
just as if it were a local procedure being activated. To make this possible when the
caller and callee reside in different address spaces, each is extended with a stub,
which passes the parameters and results to the underlying communication system
for transfer between the processes. The caller and its associated stub make up the
client and the callee and its stub make up the server2.

Stubs perform an activity known as marshalling to get parameters and results
into a form suitable for transfer as a message via the communication system. This
involves transforming data values to an appropriate transfer representation, includ-
ing the serialisation of complex data structures and (as far as possible) the substi-
tution of pointers by actual values. Correspondingly, the stub at the receiving end
unmarshals the contents of incoming messages and passes the parameters or results
on across the procedure interface.

Stubs are nowadays compiled from descriptions of the interfaces for the proce-
dures to be called, written in an Interface Definition Language (IDL). These descrip-
tions typically have the form of procedure headers or function prototypes, usually
tagged with additional information about whether the parameters are to be passed to,
from, or both to and from the procedure. An example, in the IDL for CORBA [101],

2 In some RPC-based systems, servers are known as objects, to underline the similarity between
client-server systems and the caller/object structure characteristic of object oriented systems.

306 10 Application Support Protocols

typedef unsigned long ACNumber;

typedef unsigned long PINcode;

typedef string Date;

exception UnknownAC;

exception InvalidPIN;

exception NotEnoughFunds;

interface AC

struct ACdetails string owner;

long long balance;

Date lasttrans;

;

void Credit(in long long Amount);

void Debit (in long long Amount) raises(NotEnoughFunds);

void When (out Date latest);

void Show (out ACdetails AClist);

;

interface Control

AC Access(in ACNumber acno,

in PINcode pin) raises (UnknownAC, InvalidPIN);

;

Fig. 10.8 CORBA IDL description for banking interface

can be seen in Figure 10.8. The CORBA IDL has a syntax based on C++; other IDLs
are based on Java, C or other languages. The example shows two interfaces:

• AC, which offers procedures for performing operations on a bank account. The
details of this account are described by the structure ACdetails, which contains
information about the owner, the current balance and the date of the latest trans-
action on the account. Operations are provided for crediting the account, debiting
the account, finding the date of the latest transaction and returning all the stored
account details.

• Control, which offers a single procedure, Access. Given an account number
and a personal identification number (PIN code), this returns a reference to an
object of type AC which describes the corresponding account.

From the IDL description, the stub compiler generates code in some convenient
implementation language, which will marshal and unmarshal arguments and results
of the appropriate types in an efficient manner. If a type cannot be dealt with au-
tomatically by the compiler, for example because it exploits pointers in some way
which the compiler cannot analyse, the user may have to supply a suitable portion
of code. Details of this compilation are not really a topic which has much to do
with protocol design, however, and the interested reader is referred to the literature
elsewhere [51].

10.6 Client-server Systems 307

10.6.2 Binding

In a system which supports remote operations, clients must be able to find servers
offering the interfaces in which they are interested. As discussed in Chapter 7, the
client may be provided with the name of the server as an item of ‘common knowl-
edge’, or may find an appropriate server via a registry or trader, which maintains
a database of available interfaces and the servers which provide them. A registry is
itself a kind of specialised server, which typically offers at least four operations to
its clients (which are of course the “ordinary” servers and their clients):

bind: Registers a service interface and associates it with a network name or URI.
rebind: Associates a new service interface with an already registered network

name or URI.
unbind: Removes information about a service interface with a given network

name or URI.
lookup: Obtains a reference to a service interface with a given network name or

URI.

bind, rebind and unbind are used by (ordinary) servers to register their services,
while lookup is used by (ordinary) clients to find a desired service. In some Client-
Server systems, such as ones based on CORBA, a further database known as an
interface repository is used for storing the interfaces available in the system, includ-
ing descriptions of the datatypes defined in the IDL for use in the interface.

In many practical RPC systems, the lookup function will also deal with importing
the necessary stub code, identifying the client to the server and so on. Sometimes
this activity is (rather confusingly) denoted client binding, as it sets up a relationship
between the client and the server. This is especially important in secure systems,
where the server needs to have convincing information about the identity of the
client, before it will allow actual RPC calls to be executed. The identity may be
supplied in various ways, for example (with increasing security):

• As a process identifier.
• As a previously agreed (identifier,password) pair.
• As a digital signature.

In a secure system, the server will check the identity of the client during client
binding, and may also require identity information to be supplied together with each
call of a remote procedure.

10.6.3 Asynchronous RPC

The normal, synchronous form of RPC exhibits the traditional flow of control of
local procedure calls, and the blocking which this involves in fact makes it easier
to implement the necessary inter-process communication, since the client and the
called procedure in the server cannot be active at the same time. Nevertheless, the

308 10 Application Support Protocols

Se
rv

er
1

Se
rv

er
2

Se
rv

er
3

C
A

B

C
B

A
A

B

results
arrive

C
lie

nt

Se
rv

er

Se
rv

er

C
lie

nt

C
lie

nt

call A

call B

call A
call B
call C

call A
call B
call C

return

execute

return

execute

C

Time

call C

(a) (b) (c)

Fig. 10.9 Synchronous and Asynchronous Remote Procedure Call.
(a) Synchronous RPC. Client is blocked (dotted line) during call.
(b) Asynchronous RPC to a single server without return of results. Calls of A, B and C can be
overlapped. The final call of C is synchronous; arrival of the results from C tells the client that all
calls have been dealt with.
(c) Asynchronous RPC to three servers with return of results. Calls can be overlapped. Client data
structures are needed for checking progress and saving results.

lack of parallelism inherent in this form of control has led to a certain interest in
asynchronous RPC, where the client is allowed to continue immediately after send-
ing off a request for execution of a procedure. This is a particular advantage when
the server is on a remote machine, as the time for exchange of call and return mes-
sages will then normally be considerable and it often becomes worthwhile to set
several RPC requests going instead of just waiting for them to execute sequentially.
Even more parallelism can be exploited if calls can go to several servers on several
remote machines, as illustrated in Figure 10.9. If both client and processor run on
the same processor, on the other hand, asynchronous RPC is rarely of interest, for
the obvious reason that if the client continues execution after a call, then the CPU is
not available for the server to execute the call.

Asynchronous RPC systems can roughly be divided into systems which return
results and systems which do not. If no results are to be returned, the client must
marshal the parameters and transmit the call message, and can then continue with
whatever it is busy doing. In some systems, to give the client at least a certain pos-
sibility of keeping track of what has happened, a sequence of asynchronous RPC
requests to a particular server must be terminated by a normal, synchronous RPC re-
quest which ‘flushes’ the channel to the server. When the result of this synchronous

10.6 Client-server Systems 309

call is received, the client knows that all the asynchronous requests have been dealt
with – though of course the type of call semantics offered by the system will deter-
mine the extent to which the called procedures have in fact been executed.

10.6.4 Object Services and Middleware

Systems which support generalised Client-Server architectures, such as the indus-
try standard CORBA or Microsoft DCOM, often offer a number of general purpose
services which can be used to support the construction of complex system compo-
nents. In the case of CORBA, these general purpose services include the previously
mentioned trader service, together with services to support concurrency control,
security, naming, handling events, handling of persistent objects, transactions and
providing a reliable time source. Most of these topics have already been covered in
other contexts in this book, and we shall not go into more details here.

Transactions are an especially important topic in object oriented systems [119],
as it is necessary to have a strategy for dealing correctly with nested transactions.
For example, it may make sense for a child transaction to be allowed to abort without
forcing the parent transaction to abort. Careful consideration also has to be given to
concurrency control if several children may be started at the same time, so that the
objects support parallelism. Nested transactions are discussed in [3, 41, 127].

System architectures which involve the use of general purpose services to support
applications are often denoted middleware architectures. Typically, such systems
consist of three elements:

1. A communication element, involving layers up to the OSI Transport layer, and
providing a reliable service for transfer of messages between systems.

2. A middleware element, which offers general support services to applications.
3. An application element, which involves the actual application and its user inter-

face.

The purpose of the middleware is to allow applications to be implemented in a
platform-independent manner. Thus the middleware is in most cases used to hide
not only the network but also the details of the local operating system from the
application.

RPC is itself a simple example of middleware. It hides from the application all
the details of the messages which have to be sent between the client and server,
the way in which these have to be marshalled and unmarshalled and the security
mechanisms which are used. More advanced styles of middleware include support
for particular application programming paradigms:

Remote Object Invocation (ROI): Offers facilities for activation of methods on
objects located on remote systems.

Message Oriented Middleware (MOM): Offers facilities for asynchronous ex-
change of messages.

310 10 Application Support Protocols

OS +
network

OS +
network

Proxy Skeleton

Object

Invoked method

Object
state

Client invokes Copy of
object’s
interface

emote method

Call information

Client Server

Fig. 10.10 Architecture of a system with Remote Object Invocation

Stream-oriented Communication: Offers facilities for supporting the exchange
of continuous media, such as audio and video, for example in distributed multi-
media applications.

ROI systems, such as Java RMI (Remote Method Invocation) are more complex
than plain RPC systems because of the need to pass references to remote objects
through a distributed system. The object itself, including all its state, continues to
reside on the server side of the system. On the client side, a so-called (object) proxy
is imported from the server. This is illustrated in Figure 10.10. The proxy is the
object-oriented version of the client-side stub used in simple RPC systems, and –
like the stub – it offers the same interface to the client as the remote object would.
The server-side stub is in ROI systems often known as the skeleton. As in the case
of RPC, it may not be possible to find a suitable marshalling algorithm for all types
of object; the type must be serializable. Typically, the proxy is set up when binding
takes place, and contains code for marshalling, unmarshalling, handling security
and so on. This code is imported from the server, and many ROI systems simply
represent remote object references by network references, which specify the server
name or address and a path to the file on the server containing the proxy code.
For example, the URIs used in HTTP and other systems (to be discussed in the next
chapter) are suitable for this purpose. Apart from these differences in representation,
the protocols used in ROI systems are essentially the same as with RPC.

MOM systems, such as IBM’s MQSeries, offer support for distributed applica-
tions which rely on message passing via networks of message queues. Applications
do not need to know about the structure of the underlying communication network
or the addresses of the systems involved, but just see the queues, which are identified
by logical names. The underlying middleware looks after functions such as routing
between queues, translation to appropriate local syntax for data and so on.

Finally, Stream-oriented middleware systems offer functionality for ensuring the
transfer of continuous streams of data, as required in distributed multimedia ap-
plications. So-called continuous media, such as video and audio, typically have
isochronous timing requirements. This means that the individual frames or audio

10.6 Client-server Systems 311

samples must be transferred with an end-to-end delay which lies within a certain
interval: [dmin,dmax]. This requirement is often called bounded jitter. At the same
time, the streams have particular bandwidth requirements, which must be fulfilled
in order to achieve a given quality of presentation. Middleware to support this type
of application needs to ensure that the network and operating system can meet these
Quality of Service (QOS) requirements in a platform independent manner. This re-
quires the systems involved to exchange information about the currently available
bandwidth and the currently achieved QOS, so that resources can be allocated to
ensure that the QOS requirements are met.

10.6.5 SOAP

A rather different approach to creating a platform-independent mechanism for sup-
porting remote access to services is to use the Simple Object Access Protocol, usu-
ally just known as SOAP. In simple cases, a remote procedure on a server or a
method on a remote object can be activated by sending a SOAP request to the object,
specifying the procedure or method and its arguments, and the results are returned in
a SOAP response. In more general cases, information can be passed through several
intermediate systems (in SOAP known as nodes), which can play different roles in
processing the information. Two important standard roles are:

• ultimateReceiver, where the node is to act as the ultimate destination for the
information, as in the case of an RPC server.

• next, where the node is to act as an source or relay, which passes on the informa-
tion to another node, as in the case of an RPC client.

SOAP requests and responses are both examples of SOAP messages, and are en-
coded in the fully platform-independent Extensible Markup Language (XML) [271],
which has been described in Section 8.4.3. Each SOAP message is syntactically an
XML document, made up of a SOAP envelope, which contains an optional SOAP
header, typically specifying instructions intended for the various nodes which han-
dle the message, and a mandatory SOAP body, intended for the ultimate receiver of
the message. The header and body may each contain one or more child elements.
The child elements of the header are known as header blocks. This hierarchical
structure is illustrated in Figure 10.11.

A simple example of a SOAP request is shown in Figure 10.12 on page 313.
In this example, we imagine that the method to be activated returns the tempera-
ture observed in a named city at a given date and time. The SOAP request is an
XML document following the syntax given in Figure 8.7 on page 258, where the
body of the document is a SOAP Envelope. A SOAP message must not include a
DTD, but uses XML Schema to describe its structure and content. Both the body and
header must (if present) be XML elements. Thus the SOAP Envelope starts with
a <env:Envelope> start tag and finishes with a </env:Envelope> end tag, and

312 10 Application Support Protocols

Fig. 10.11 Hierarchical struc-
ture of a SOAP message

envelope

SOAP
body

SOAP
message

SOAP
header

SOAP

header
block
header

entry
header header

entryentry
header
entry

header
blockentry
header

entry
headerbody

child
header
block

similarly for the other elements which appear. In version 1.2 of SOAP, messages
use two basic namespaces, which by tradition are given the namespace prefixes:

• env: which abbreviates the full namespace identifier:

http://www.w3.org/2003/05/soap-envelope

This namespace includes definitions for SOAP envelopes and the standard ele-
ments within these, such as SOAP headers, bodies and faults.

• enc: which abbreviates the full namespace identifier:

http://www.w3.org/2003/05/soap-encoding

This namespace includes schemas defining the types used in SOAP and the rules
for serialising them.

Further standard namespaces are defined for specific ways of using SOAP, for ex-
ample for RPC-like applications.

The basic SOAP types in enc: include all the simple types of XML and a number
of SOAP-specific definitions of complex types such as structs and arrays. In SOAP,
a struct is an XML element with named sub-elements, which themselves can be of
any types. Structs are used to model the structure or record types found in many
conventional programming languages. The names of the sub-elements in a struct
are significant; their order is not significant. For example:

<e:Bibentry>

<author>Alfons Aaberg</author>

<title>My life as a latchkey child</title>

<pubyear>2015</pubyear>

</e:Bibentry>

is an instance of a struct type with three elements, two strings and an integer.
An array in SOAP is an ordered sequence of elements. Thus the order of the

elements is significant, but the names of the elements are not. The elements may be
of the same type, as in:

10.6 Client-server Systems 313

<?xml version="1.0"?>

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">

<env:Header>

<t:query xmlns:t="http://www.picopayment.com/query"

env:encodingStyle="http://www.picopayment.com/encoding"

env:mustUnderstand="true"> 3 </t:query>

</env:Header>

<env:Body>

<m:getTemp xmlns:m="http://www.weathermax.com/">

<city>Kyoto</city>

<time>2004-04-01T07:35</time>

</m:getTemp>

</env:Body>

</env:Envelope>

Fig. 10.12 A SOAP request to invoke a method getTemp with two arguments: city and time.

<Primes enc:itemType="xs:int" enc:arraySize="5">

<number>2</number>

<number>3</number>

<number>5</number>

<number>7</number>

<number>11</number>

</Primes>

which is an instance of an array with five elements of int type (i.e. an array of type
int[5]). Or they may be of different types, as in:

<Notes enc:itemType="xs:ur-type" enc:arraySize="4">

<item xsi:type="xsd:decimal">11.3</item>

<item xsi:type="xsd:float">-27.517E03</item>

<item xsi:type="xsd:string">Monday morning</item>

<item xsi:type="xsd:string">Friday after 3.00pm</item>

</Notes>

which is an instance of an array with four elements of mixed types: a decimal frac-
tion, a floating point number and two strings. Note that the type of the array elements
is given as xs:ur-type, which denotes the union of all types (i.e. “any type”).

The SOAP Header, if any, within the Envelope of the request is used to provide
information about how the SOAP message is to be handled by the various nodes
through which it passes. This may include instructions for how SOAP nodes playing
various roles should deal with the message, or contain general information related
to the application involved. There can be several header blocks in the header, for ex-
ample giving instructions for nodes with different roles. In Figure 10.12, the header
contains a single block with information related to an accounting mechanism for the
weather service: the price in “picounits”. The definitions which explain this can be
found in the namespace with the t: prefix, specified by the namespace definition:

xmlns:t="http://www.picopayment.com/query"

SOAP header blocks may have a mustUnderstand attribute with a Boolean value.
If the value is true, as in Figure 10.12, then all nodes which are intended to process

314 10 Application Support Protocols

that header block3 must understand and process all the items specified within the
block. Otherwise they must discard the message and cause a fault. Such header
blocks are said to be mandatory. If the mustUnderstand attribute is absent or has
the value false, it is optional whether the relevant nodes can process the block.

The SOAP Body within the Envelope of the request specifies the method to be
invoked and the argument values to be used. This information is described by a
single struct or array delimited by tags identified by the name of the method, which
is traditionally defined within the namespace with the m: prefix. The full definition
of this namespace is typically included in the attributes of the struct or array. In
Figure 10.12, a struct with the tag <m:getTemp> is used, and the namespace m: is
specified by the namespace definition:

xmlns:m="http://www.weathermax.com/"

The sub-elements within this struct describe the method’s arguments. In the exam-
ple, getTemp has two arguments, city of type string and time of type dateTime,
whose actual values are Kyoto and 2004-04-01T07:35 (i.e. 7:35 in the morning
on 1 April 2004) respectively. Note that the types are not given explicitly within the
instance of the struct – they are defined by an XML schema in the namespace.

SOAP response messages correspondingly convey return information to the call-
ing system. Responses fall into two categories:

1. Normal responses, carrying return values such as function values.
2. Fault responses, indicating that the method invocation has failed.

Examples in the case of the getTemp method are shown in Figure 10.13. In the case
of a normal response, the SOAP Body contains a single XML struct or array whose
tag name is conventionally derived from the name of the invoked method by append-
ing the character sequence Response, here giving the tag <m:getTempResponse>.
This element contains sub-elements which describe the values returned from the in-
vocation. The principal return value, if any, of the invoked method is given by an
rpc:result sub-element, which refers to the sub-element which actually carries
the value: in this example, the temperature sub-element, carrying the value 6.2 of
type float. As in the case of the call information, the types of the return values do
not appear explicitly in the instance of the struct, but are defined by a schema in the
namespace with prefix m:. If the principal return value is void, then the rpc:result
sub-element can be omitted.

In the case of a fault response, the SOAP body contains a single XML struct with
the tag <env:Fault>, which contains a description of the fault. This description
contains at least two XML elements:

1. A Code element specifying a fault code which describes the general class of fault;
2. A Reason element containing explanatory text.

In version 1.2 of SOAP, there are five standard fault codes (which are, in fact,
the elements of the env:faultCodeEnum enumeration type). These are listed in
Table 10.3. Fault elements may optionally contain further information:

3 Remember that a header block can have an attribute which specifies that it should only be handled
by nodes playing a specific role.

10.6 Client-server Systems 315

(a) <?xml version="1.0"?>

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">

<env:Header>

<t:query xmlns:t="http://www.picopayment.com/query"

env:encodingStyle="http://www.picopayment.com/encoding"

env:mustUnderstand="true"> 3 </t:query>

</env:Header>

<env:Body>

<m:getTempResponse

env:encodingStyle="http://www.w3.org/2003/05/soap-encoding"

xmlns:m="http://www.weathermax.com/"

xmlns:rpc="http://www.w3.org/2003/05/soap.rpc">

<rpc:result>m:temperature</rpc:result>

<m:temperature>6.2</m:temperature>

</m:getTempResponse>

</env:Body>

</env:Envelope>

==

(b) <?xml version="1.0"?>

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">

<env:Body>

<env:Fault>

<env:Code>

<env:Value>env:Sender</env:Value>

</env:Code>

<env:Reason>

<env:Text xml:lang="en">

Too many parameters in call of "getTemp"</env:Text>

<env:Text xml:lang="da">

For mange parametre i kald af "getTemp"</env:Text>

</env:Reason>

</env:Fault>

</env:Body>

</env:Envelope>

Fig. 10.13 SOAP responses to an invocation of the getTemp method.
(a) Normal response with return value; (b) Fault response due to an error on the caller’s side.

Table 10.3 Standard faultcodes in SOAP
Fault Code Explanation
VersionMismatch An invalid namespace was referred to in the SOAP Envelope element.
MustUnderstand A SOAP header block contained a mustUnderstand attribute with value

true, but could not be understood by the node which should handle it.
DataEncodingUnknown A SOAP header block or body child element is scoped with a data en-

coding that the node which should handle it did not support.
Sender The SOAP request was incorrectly formed or contained insufficient in-

formation to enable it to be processed.
Receiver The SOAP request could not be processed (even though it was correctly

formed).

316 10 Application Support Protocols

3. A Node element containing a URI which identifies the node on which the fault
was detected.

4. A Role element which describes the SOAP role of the system where the fault
was detected.

5. A Detail element which carries application specific error information.

This additional information is particularly helpful in cases where SOAP is used to
support more complex patterns of message passing than simple RPC.

To ensure the security of SOAP messages, digital signatures and/or encryption
can be applied to the XML elements which make up the SOAP requests and re-
sponses. We have seen in Section 8.4.5 some examples of how this can be done;
further details can be found in references [269, 270]. In a SOAP document, it is
standard practice to include the security information within the SOAP Header as
an XML Security element. This is defined in the XML namespace wsse and in-
cludes the signature and/or ciphertext for all or part of the SOAP Body, together
with one or more security tokens in the form of user ids, X.509 certificates or other
forms of authentication which can prove the sender’s identity and right to perform
the requested operations. Further details can be found in [261, 263, 264].

We shall return in the next chapter to a number of contexts in which SOAP is
used in combination with HTTP to offer services through the Internet.

10.7 Security Middleware

Middleware is also a useful solution when security has to be dealt with in appli-
cations. General middleware schemes such as CORBA and DCOM have their own
security services, but within the Internet protocol suite, a specific suite of support
protocols for providing application security has been developed. This is known as
Transport Layer Security (TLS) [227], and is a further development of version 3.0
of the Secure Socket Layer (SSL) protocol suite developed by Netscape Corporation
for supporting security in Web-based applications.

There are four elements in the TLS protocol suite, which are positioned in the
Internet layered architecture is shown in Figure 10.14. The four elements fall into
two groups:

TLS Record Protocol: This is a genuine middleware protocol, inserted between
the Transport Layer and the Application Layer, so as to provide a service offering
basic encryption and data integrity services to applications.

TLS Application Protocols: These are three Application Layer protocols which
are used to control the operation of the Record Protocol.

Handshake Protocol: Used for client/server authentication, and to agree on
the desired encryption algorithms and keys for use in the Record Protocol.

Change Cipher Spec Protocol: Used to select the agreed encryption algo-
rithm and keys for use until further notice.

10.7 Security Middleware 317

Fig. 10.14 The TLS protocol
suite’s relation to the OSI
layers.

HTTP

TCP

IP

SSL Record Protocol

SSL SSL
Change SSL

AlertCipherspecHandshake

Fig. 10.15 Features of the TLS Record Protocol.

Alert Protocol: Used to transfer information about failures or unexpected
events in the operation of the Record and Handshake Protocols.

The Record Protocol offers general security facilities which can be applied to
Application Layer PDUs. Each APDU to be transmitted is processed by execution
of the following steps:

1. Fragmentation into blocks of size not greater than 214 bytes.
2. (Optional) lossless compression.
3. Addition of a MAC, using a shared secret MAC key.
4. Encryption, using a shared secret encryption key.
5. Addition of a header, which indicates the Application protocol in use: Hand-

shake, Change Cipher Spec, Alert or “other application”.

This process is illustrated in Figure 10.15. The MAC algorithms currently allowed
in TLS are MD5 and SHA-1. The encryption algorithms allowed are all SKCS algo-
rithms, including the block ciphers AES, IDEA with 128-bit keys, RC2 with 40-bit
keys, DES with 40- or 56-bit keys, 3DES, and Fortezza with 80-bit keys, and the
stream cipher RC4 with 40- or 128-bit keys.

318 10 Application Support Protocols

The Handshake Protocol is used to establish parameters of the secure connection
for use in the Record Protocol. It is a Client/Server protocol with 4 phases as follows:

1. Establishment of security capabilities:
The client sends proposals for the following parameters:

• The TLS version to be used.
• A timestamp and a 28-byte cryptographically secure random number, for use

as a nonce.
• A Session ID identifying the session. If the ID is empty, a new session will

be started (with an ID supplied by the server in its response). If the ID is not
empty, it must identify a session for which cryptographic algorithms and keys
have been agreed previously.

• A list of one or more CipherSuites, where each CipherSuite specifies a com-
bination of a Key exchange algorithm, an encryption algorithm and a MAC
algorithm4.

• A list of one or more compression algorithms.

Where the client is able to support several possibilities, for example with re-
spect to the CipherSuite or compression algorithm, it is expected to include all
the possibilities in its proposal, listed in order of preference. If a new session
is to be started, the server selects one possibility and sends it in its reply to the
client. If a previous session is to be resumed, the server is expected to be able to
recognise the Session ID and select the CipherSuite and other parameters as used
previously; if it cannot do so, it executes the Alert protocol to transfer an error
message to the client, and the Handshake Protocol terminates.

2. Server authentication and key exchange:
The server performs the selected key exchange protocol. If an anonymous key
exchange protocol, such as the original Diffie-Hellman key agreement protocol
described in Section 6.5 on page 184, has been selected, then authentication is
omitted. Otherwise the server will first authenticate itself to the client, typically
by sending a X.509 certificate. If this does not itself include enough information
to establish a shared secret, the server assumes that the client will respond with
the necessary information in the next phase of the Handshake Protocol.

3. Client authentication and key exchange:
The client performs the selected key exchange protocol in an analogous manner
to the server. If unauthenticated key exchange by the Diffie-Hellman protocol is
to be used, the client just replies to the server with Diffie-Hellman parameters in
the usual way. If authentication is required, the client sends a certificate. If the
certificate does not include sufficient information for the server to determine the
shared secret, a suitable key exchange protocol is then performed. This is com-
monly just a key transport protocol, in which the client encrypts the secret using
the public key provided in the server’s certificate, and sends the encrypted secret
to the server. The secret established in this phase of the Handshake Protocol is in

4 In SSL, the combination of the encryption algorithm, MAC algorithm and the necessary keys is
known as a CipherSpec. This term is not used in TLS.

Further Reading 319

fact a shared pre-secret, from which the true master secret is evaluated by both
parties for use in the cryptographic algorithms.

4. Finish:
The basic exchange of cryptographic parameters is terminated, and the Change
Cipher Spec protocol is executed in order to bring the CipherSuite and keys
which have been agreed upon into use.
Using the selected CipherSuite and keys, a final Finished message is then sent
from the server to the client, including a summary of all the information ex-
changed during execution of the Handshake Protocol. Since the CipherSuite has
now come into force, this summary is encrypted and protected by a MAC. The
client is expected to verify that the content of this message agrees with what has
in fact been exchanged during the execution of the previous steps of the protocol.
The client then sends a similar Finished message to the server, which the server
must verify. If the verification succeeds at both sides, the Handshake Protocol
terminates; if not, the Alert protocol is used to inform the opposite party that the
protocol has failed, and the session is abandoned.

The two other TLS Application Protocols are trivial. The Change Cipher Spec pro-
tocol merely involves transmission of a single message from one party to the other,
indicating that the agreed CipherSuite and keys are to be taken into use. The Alert
protocol involves transmission of a status, information or error message between the
two parties.

Further Reading

The Upper Layer protocols described in this chapter are intended to support appli-
cations, and a good way to understand them better is to extend your knowledge of
distributed applications in general. Distributed databases are an area which it is par-
ticularly rewarding to study, since they combine elements of many other application
types. In fact, almost all the concepts of Commitment, Concurrency and Recovery
and of the more general Transaction Processing originated in one way or another in
distributed databases.

An important topic in this connection is concurrency control, which we have not
gone into in any detail in this book, partly because most of the techniques used orig-
inate in centralised systems and have no bearing on protocol mechanisms. There
are in fact several styles of concurrency control. The simplest and best known one
is to use locks [39] to ensure exclusive access for write operations on data. A typi-
cal example of this style is the use of semaphores in centralised systems; passing a
semaphore by executing a wait or P operation is equivalent to locking the associated
resource. A well-known problem in this style of concurrency control is that dead-
lock may arise if two transactions are waiting for one another’s locks to be freed.
Deadlock can be avoided, for example by locking objects in a canonical order, but
this usually reduces concurrency severely. The alternative cure is deadlock detec-
tion, which may be based on timeouts or on building a wait-for graph to discover

320 10 Application Support Protocols

which transactions are waiting for one another in a mutually cyclic manner. Ex-
amples of algorithms for deadlock detection in distributed systems can be found
in [22, 23, 88].

A second style of concurrency control is optimistic control, as introduced by
Kung and Robinson [74]. This exploits the fact that genuine locking conflicts are
in fact quite rare, so locking (which in practice gives a substantial administrative
overhead) is in most cases superfluous. In optimistic control, no locks are used, but
each transaction is checked when it is about to commit, to see whether its read or
write operations have conflicted with other transactions. Yet another method is to
use timestamps on transactions [10]. In rough terms, a write request is only valid
if the data item was last read and written by an older transaction; a read request is
valid only if the data item was last written by an older transaction. A general review
of many of these methods for use in distributed databases can be found in [9].

Chapter 11
Application Protocols

“You know my methods. Apply them.
“The Sign of Four”

Arthur Conan Doyle.

On the basis of the general basic facilities described in the previous chapter, large
number of protocols for use in specific applications have been devised, and in this
chapter we shall consider some typical ones. The examples will be taken from both
the OSI and the Internet protocol suites, and will illustrate various ways in which
specific application requirements can be taken into account.

When considering how a protocol for a particular type of distributed application
is to be organised, an important factor to take into account is the pattern of commu-
nication required. There are several basic possibilities:

• Peer-to-peer communication. Here, the application makes use of exchanges of
information between two parties with equal status (peers).

• Client-server communication. Here, two parties are involved, but all initiative
comes from the client, and the server merely responds to the client’s queries or
instructions.

• Hierarchical communication. Many parties are involved, but are organised in a
tree-like hierarchy, so that all communication takes place between them pairwise,
along the branches of the tree.

• Multi-peer communication. Many parties are involved, but are all considered
peers, so communication can take place between any subset of them.

• Agent-based communication. Many parties are involved, and communicate with
one another in an adaptive, intelligent manner in an effort to solve a common
problem.

We shall see examples of applications which illustrate all these architectures.

321

322 11 Application Protocols

11.1 File Transfer

The current generation of file transfer protocols are typical examples of protocols
which support point-to-point communication of data at the application program
level. The data are in this case files, or portions of files – records, blocks or the like.
The aim of this is generally speaking to give an application program on one system
the impression that the files on a remote file system can be directly manipulated in
the same way as local files can.

In its full generality, this aim is very difficult to achieve, since the range of file
systems which exist on different types of machine under diferent operating systems
is enormous. Not only do file systems differ markedly in the naming conventions for
files, they also offer widely differing ranges of file management operations (for cre-
ation, deletion, renaming and so on), and widely differing file structures (sequential,
index sequential, blocked, spanned and so on), for which different access methods
are required. Thus operations intended for the local file system will in general need
to be mapped onto other operations in the remote file system.

11.1.1 ISO File Transfer and Management

A good solution to a major part of this problem is offered by the ISO File Transfer
and Management (FTAM) service and its associated protocol [144–147]. Here, all
operations on files are expressed in terms of a Virtual File Store (VFS), which is
an abstract data type – i.e. a set of data structures and operations on them – which
models an idealised file system. The data structures describe:

• The organisation of the data within the file, in terms of a possibly hierarchical
structure of individually manipulable File Access Data Units (FADUs),

• The file attributes of the file, which describe more or less static properties, such
as its name, size, date of creation, accounting information, access control infor-
mation and so on,

• The activity attributes of the file, which describe aspects of the current access to
the file, such as the current position for file access, and the currently permitted
forms of file access (read, insert, replace, extend or erase), concurrency control
restrictions (exclusive, shared or no access), and the size of the units which are
to be locked when exclusive access is required – the locking granularity (file or
FADU).

To perform a file operation on a remote system, the operation must be expressed in
terms of operations on the VFS, and a suitable representation of these operations
is then transferred to the remote system, where they are interpreted on the real file
system there. This is illustrated in Figure 11.1. An obvious advantage of this way
of doing things is that only one mapping (between the local operations on the real
file system and operations on the VFS) and its inverse are required in each system,
instead of one mapping for each type of remote system.

11.1 File Transfer 323

FTAM FTAM
Application

process 1
Application

process 2

Real file
system Local

operations
Local
operations

<Open>
<Read_attrib.>

<Read>
<DATA>
<DATA>

<Transfer_End>
<Close>

Elements in FTAM protocol, operating on
Virtual File Store (VFS)

mapped tomapped from

{ {.....
.....
.....

.....

.....

.....

Fig. 11.1 Principle of operation of ISO FTAM

in
it

ia
li

sa
ti

on
 p

ha
se

fi
le

st
or

e
m

an
ag

em
en

t p
ha

se

fi
le

 s
el

ec
ti

on
 p

ha
se

fi
le

 m
an

ag
em

en
t p

ha
se

fi
le

 o
pe

n
ph

as
e

fi
le

 c
lo

se
 p

ha
se

fi
le

 d
es

el
ec

ti
on

 p
ha

se

te
rm

in
at

io
n

ph
as

e

F-INITIALIZE

Filestore management

F-SELECT

F-READ-ATTRIB

F-OPEN

F-LOCATE

F-READ F-TRANSFER-END

F-CLOSE

F-DESELECT

F-TERMINATE

F-CREATE

F-CHANGE-ATTRIB

F-ERASE

F-WRITE

F-DELETE

F-U-ABORT
F-P-ABORT

FTAM regime

file selection regime

file open regime

data transfer regime

data access phase

F-DATA-END

F-DATA

Fig. 11.2 Regimes in ISO FTAM (after [144])

Operations on files in general involve specifying which file is to be used, what
kind of access (read/write/...) is required, the position in the file at which access
is required and so on. To avoid duplicating all this information in every operation,
ISO FTAM works with a scheme of nested regimes for setting up the environment
within which an operation will be performed. This is illustrated in Figure 11.2. For

324 11 Application Protocols

example, the file selection regime is entered by using the F-SELECT or F-CREATE
services in the so-called file selection phase. These services respectively result in
the selection and creation of a unique named file, to which the operations performed
in the embedded regimes will apply. The selection is valid until the file selection
regime is left as a result of using one of the services of the deselection phase. While
it is selected, the file may have its attributes changed (in a file management phase),
it may be opened for particular forms of access (in a file open phase), positioning
and data transfer operations may be performed on it (in a data access phase), and it
may be closed again (in a file close phase).

Likewise, during the data access phase, a data transfer regime can be entered by
using the F-READ or F-WRITE services. The party who initiates entry to this regime
then becomes the initiator for the data transfer, and can transfer data respectively
from or to the currently selected file until the regime is left by the initiator using the
F-TRANSFER-END service. The actual transfer takes place via a sequence of zero
or more F-DATA primitives, which bear the data, and is terminated by an F-DATA-
END primitive.

The full generality and complexity of the FTAM service is often unnecessary,
and five Service Classes, which offer various sub-sets of the service, have therefore
been defined:

1. Transfer class, for simple data transfer of files or parts of files between systems.
2. Management class, for control of the filestore, without any facilities for data

transfer.
3. Transfer and management class, which combines (1) and (2).
4. Access class, which permits a whole sequence of operations to be performed on

remote data.
5. Unconstrained class, which permits the whole service to be used.

These service classes are in turn structured from smaller combinations of related
facilities, grouped as functional units. The facilities in the various functional units
and service classes are described in detail in [146].

The ISO FTAM Application Service Element can be summarised as follows:

Protocol example: ISO FTAM Protocol, (ISO8571-3) [146].
Service provided: Facilities for confirmed selection and deselection of files.

Optional facilities for confirmed opening and closing of files, and for uncon-
firmed connection-mode point-to-point full- or half-duplex code transparent data
transmission involving files or portions of files (FADUs).
Optional confirmed facilities for file management (creation, deletion, change of
attributes).
Optional facilities for locking at the level of individual FADUs.

Connection phase: None (see below).
Initialisation phase Two-way exchange protocol for establishment of FTAM

regime. Negotiation of FTAM QOS, service class, available functional units, Ap-
plication and Presentation contexts. Transfer of initiator’s identity, accounting
information, password.

11.1 File Transfer 325

File selection phase Two-way exchange protocols for selection of an existing file
or creation and selection of a new named file. Selection of forms of access (read,
insert, replace, extend, erase, read attribute, change attribute, delete) required in
the selection regime, and of password control for any or all of these. Selection
of form of concurrency control (not required, shared access, exclusive access, no
access).

File management phase Two way exchange protocol for reading or making con-
firmed changes to named file attributes.

File open phase Two-way exchange protocol for opening a file, possibly with
selection of new Presentation context (reflecting a new contents type for the file),
concurrency control, forms of access, recovery mode or locking granularity.

Data access phase: Unacknowledged transfer for initiating a sequence of read
or write transfers respectively from or to a remote file. Unacknowledged data
transfer. Unacknowledged transfer for terminating a sequence of read or write
transfers. Two-way exchange for terminating a read or write sequence.
Two-way exchange protocol for cancelling transfer of a data unit.
If File Access FU is selected, two-way exchange protocols for positioning of file
for subsequent access and for deleting portions of a file.
Optional error recovery protocol, using Session layer minor synchronisation
point and resynchronisation facilities.

File close phase Two-way exchange protocol for closing currently selected file.
File deselection phase Two-way exchange protocol for deselection of the cur-

rently selected file.
Two-way exchange protocol for deletion of currently selected file.

Termination phase Two-way exchange protocol for orderly termination of FTAM
regime.

Disconnection phase: None (see below).
Other features: Concurrency control, possibly via use of the CCR ASE (see be-

low). Concatenation and separation of APDUs into PSDU.
Coding: BASN.1 encoding of all APDUs.
Addressing: A-titles for calling and called entities, together with the P-addresses

derived from these via a suitable directory, are exchanged in the initialisation
phase.

Fault tolerance: Resistance to errors which cause the supporting communication
system or the end systems to fail, if the error recovery protocol is used.

Note that FTAM does not itself offer facilities for connection and disconnection.
In the OSI Application layer, as discussed above, such facilities are part of the As-
sociation Control Service Element (ACSE), which is common for almost all other
service elements. The APDUs of the FTAM initialisation phase are exchanged via
the ACSE service primitives used to establish the association between the two ap-
plication processes, and the PDUs of the termination phase are exchanged via the
ACSE primitives used to release this association.

326 11 Application Protocols

11.1.2 Internet FTP

Because it is intended to deal with files of arbitrary structure and content, ISO FTAM
is a complex protocol. For use in distributed systems where the file systems are
known to be more or less the same in all nodes, simpler protocols are available and
are often preferred. The Internet/DoD File Transfer Protocol (FTP) [215] assumes,
for example, that a file can be structured:

1. As an unbroken sequence of data bytes (File structure).
2. As a sequence of sequential records, separated by newline or carriage return line

feed characters (Record structure).
3. As a set of independently identifiable pages (Page structure).

and that the content of the file can be of one of four types:

ASCII: Characters, which for transfer will be converted to an 8-bit ASCII repre-
sentation.

EBCDIC: Characters, which for transfer will be converted to an 8-bit EBCDIC
representation.

Image or Binary: Contiguous sequences of bits, which for transfer will be packed
into 8-bit bytes.

Local: ‘Logical bytes’ of an arbitrary size specified by the user, each of which for
transfer will be sent in a sequence of one or more 8-bit bytes, with padding to fill
the last byte of the sequence.

The current structure is selected by using the STRU command, and the type by us-
ing the TYPE command. The ASCII and EBCDIC types are particularly intended
for efficient transmission of text files between systems which use ASCII and ED-
CDIC character codes respectively, as no conversion is then actually required. For
these two types, three sub-types are also defined, which indicate whether the file is
intended to be sent to a printer and, if so, what sort of printer control characters it
contains:

Non Print: The file does not contain characters intended for controlling a printer.
TELNET: The file contains ASCII/EBCDIC vertical format controls (CR, LF,

NL, VT, FF) which a printer should interpret.
Carriage Control: The file contains ASA Fortran vertical format control charac-

ters in the first character of each line.

The protocol enables the user to perform read, write, append, create, delete and
rename operations on files and directories – a repertoire which is suitable for many
simple applications.

The actual protocol is extremely simple: It consists of a sequence of two-way
exchanges between a party acting as a Client and the system containing the file
system, which acts as a Server. In each exchange, a command identified by a 3-
or 4-letter code goes from Client to Server, and an acknowledgment containing a
3-digit return code indicating the success or failure of the command is sent back in
the other direction. These exchanges take place on a control channel; data transfer

11.1 File Transfer 327

transfer
Data

Protocol
interpreter

transfer
Data

Protocol
interpreter

system
File

system
File

User
interface

Data

Commands

Responses
(via port 21)

(via port 20)

ServerClient

Fig. 11.3 Default configuration of Internet FTP

takes place over a separate data channel, which may potentially be connected to a
system other than the server. As default, TCP port 21 is used for the control channel
and port 20 for the data channel, but the PORT command can be used to select an
alternative IP address and/or port number for the data channel. The default system
organisation is shown in Figure 11.3.

Data transfer may take place in one of three modes, selected by using the MODE
command:

Stream mode: This is the default mode. Data are transferred as a stream of octets,
which is broken up into convenient sized blocks for transmission via TCP.

Block mode: The file is transferred as a series of data blocks, each of which is
preceded by a header giving the type and length of the block. The types are bit
encoded, where the individual bits can indicate that the block is the last in a
record, the block is the last in the file, the block may contain errors, or the block
is a marker block for possible resynchronisation of the data stream after errors.

Compressed mode: The file is transferred as a series of data blocks, where se-
quences of repeated octets are compressed using replication count compression.

The choice of mode is independent of the structure of the file (File, Record or Page),
although it is obviously easier to send, say, a Page structured file in Block mode than
in Stream mode.

FTP is, despite everything, a relatively complex protocol, and not all FTP clients
or servers offer implementations of all its features. As a minimum, a server must
offer to transfer files with the ASCII Non-print type, the File and Record file struc-
tures, and the Stream mode. As an exercise, you might like to investigate what some
of the FTP servers which you have access to can offer.

The Internet FTP protocol can be summarised as follows:

Protocol example: Internet File Transfer Protocol (Internet Standard STD9,
RFC959) [215].

Service provided: Connection-mode facilities for file system manipulation and
code transparent file transfer between systems.

Other ASEs required: —
Connection phase: Uses TELNET Login procedure on control channel.

328 11 Application Protocols

Data transfer phase: Two-way exchange protocol on control channel for setting
up read and write (or append) operations on files. Actual data transfer on separate
data channel.

Disconnection phase: Uses TELNET Logout procedure on control channel.
Other features: Two-way exchange protocol on control channel for setting up

create, delete and rename operations on files and directories and for selecting
current directory.
Optional restart after serious system error in Block mode and Compressed mode,
based on resynchronisation to marker blocks inserted in the data stream.
User-controlled abort of preceding data transfer or control command.

Coding: ASCII encoding of Control-APDUs. Data-APDUs as headerless octet
sequences in Stream mode, TLV encoded blocks in Block mode, and TLV en-
coded blocks with replication compression in Compressed mode.

Addressing: —
Fault tolerance: Resistance to errors which cause one of the participating FTP

processes to fail, if the optional restart facilities are used.

Note that FTP, like other Internet Application Layer protocols, incorporates facil-
ities which in an OSI protocol would be provided by the Session Layer (marker
blocks, resynchronisation) or Presentation Layer (character set translation, data
compression).

11.1.3 Network File System

Somewhat more generality than FTP is offered by the Network File System (NFSTM)
protocol, which is particularly common in UNIXTM systems. This uses the same
basic idea as FTAM, expressing all file operations in terms of operations on an
abstract file system, which in this case is merely an idealisation of all UNIX file
systems, and therefore considerably less general than the VFS used in FTAM. Much
of the remaining functionality of FTAM is available in NFS, including facilities for
reading and setting file attributes, and for ensuring tolerance to network and file
system faults. Important technical differences are that:

1. The actual protocol is based on the use of remote procedure calls.
2. The protocol is stateless. This makes it easier to recover from faults, but means

that concepts such as the current regime and the currently selected file are absent.
Thus each operation on a file must specify all relevant details, such as the file’s
name, the position for access and so on.

3. Locking and concurrency control are not part of the protocol, but are assumed to
be dealt with, if necessary, by the underlying UNIX operating system.

4. Instead of BASN.1, XDR encoding, which does not contain explicit type infor-
mation, is used for data elements to be transferred.

Some of these differences make the protocol more efficient, while others make it less
so, or merely avoid a problem, which then has to be solved by some other means.

11.2 Distributed Transaction Processing 329

However, they do illustrate that there are in general many ways of offering more or
less the same functionality to the user.

11.2 Distributed Transaction Processing

Given a suitable foundation, such as the facilities for Commitment, Concurrency
and Recovery provided by the ISO CCR ASE, it is possible to build up more general
systems to support the use of transactions. In this context, a transaction is a set of
related operations which enjoys the so-called ACID properties:

Atomicity: Each transaction is carried out as a whole or not at all.
Consistency: Each transaction transforms its bound data from one consistent

state to another.
Isolation: A transaction does not make partial results of its operations available

to parts of the system which are not taking part in the transaction.
Durability: Failures do not affect the result of an already completed set of oper-

ations.

As we have seen in the case of CCR, the Isolation rule implies a need for some
kind of concurrency control which can serialise concurrent update operations on
the same bound data.

The ISO Distributed Transaction Processing (OSI TP) service and its corre-
sponding protocol [195–197] offer general facilities for fulfilling these require-
ments. The basic element in OSI TP is the dialogue, which involves two users of
the service. Thus OSI TP, like CCR, is based on point-to-point communication. If
many parties are involved in a transaction, their communication is organised in a
hierarchical manner, known as a dialogue tree. In the dialogue tree, each branch is
a dialogue. The user who initiated this dialogue is known as the superior and the
other user as the subordinate.

A dialogue offers its two participants the basic possibilities of transferring data
from one to the other, of notifying one another of errors, of terminating the dia-
logue in an orderly manner, and of aborting the dialogue. Other facilities can be
agreed between the participants when the dialogue is set up. For instance, the par-
ticipants may agree that the dialogue is to have polarised control, in which case
a token mechanism is used to give one of the participants at a time control over
the dialogue, or shared control, in which case the two participants have the same
capabilities. Likewise, by choosing an appropriate handshake level, they may re-
quest that a handshake service for synchronising their activities to mutually agreed
processing points be made available.

More importantly, perhaps, the participants can choose whether or not they
should be able to use OSI TP’s facilities for initiation, commitment and rollback of
transactions in which they take part. If they do not request access to these facilities,
then it is up to the individual users of the OSI TP service to provide the functional-
ity needed to achieve the ACID properties for their transactions. Such transactions

330 11 Application Protocols

are known as application-supported transactions. This style of transaction might,
for example, be used if the application is a database system which already has the
appropriate commitment, concurrency and recovery mechanisms incorporated into
its DBMS. Transactions which use OSI TP’s facilities for transaction support are
correspondingly known as provider-supported transactions.

If OSI TP’s facilities for transaction support are available in a dialogue, the su-
perior for that dialogue can dynamically select whether to use them by choosing an
appropriate coordination level. A coordination level of COMMIT selects the facili-
ties, and NONE deselects them.

A

B C

FED

H

G

A

B C

FED

JH

G

A

B C

FED

JH

G

(1) (2) (3)

Fig. 11.4 Transaction trees in a dialogue tree. The figure shows a chained sequence of three trans-
actions involving participants A, B,. . . ,J. Dialogues in use for provider-supported transactions are
indicated by full lines and those not in use by dashed lines.

At any one time, a dialogue with coordination level COMMIT can support activi-
ties associated with a single transaction in which its participants are involved. These
activities are associated with a branch in a transaction tree, which describes the hi-
erarchical relationship between all the participants in the transaction, and is in all
important respects the same as the atomic action tree used in CCR (Figure 10.6).
When a transaction branch is ‘pruned’ from the transaction tree (normally due to
termination of the relevant transaction), the dialogue becomes available for use in
another transaction involving the same two participants. Thus in general the trans-
action tree for a given transaction will be a sub-graph of the current dialogue tree,
and there may be several disjoint transaction trees within the same dialogue tree.

In many applications, it is necessary not only to have individual atomic transac-
tions, but sequences of related transactions, perhaps involving different groups of
participants. Such sequences are in OSI TP known as chained sequences of trans-
actions. Each of the transactions corresponds to a transaction tree in the current
dialogue tree, and as the sequence is executed these transaction trees succeed one
another in the dialogue tree. These concepts are illustrated in Figure 11.4. Note that
the dialogue tree does not need to be static during this process; it may need to grow
(by the addition of new dialogues) to accomodate a succession of transactions of
increasing size. For example, in order to perform Transaction 2 in Figure 11.4, par-

11.2 Distributed Transaction Processing 331

ticipant E must extend the dialogue tree by initiating the dialogue between E and
J.

For a particular dialogue, a chained sequence is in OSI TP characterised by a
succession of transaction branches throughout which the coordination level remains
at COMMIT. Separation of chained sequences is achieved by interpolating a period
where the coordination level is NONE. This can only be done in OSI TP if facilities
for dealing with unchained transaction sequences have been selected for use over
the dialogue.

As in the case of FTAM, the full generality of OSI TP is not always needed, and
useful sub-sets of the full service can be put together from functional units. These
sub-sets are intended to support:

1. Application-supported transactions.
2. Chained provider-supported transactions.
3. Unchained provider-supported transactions.

Details of the functional units required for these classes of support can be found
in [196].

Protocol example: ISO Distributed Transaction Processing Protocol (ISO10026–
3) [197].

Service provided: Connection-mode pairwise point-to-point facilities for distrib-
uted transaction processing.
Token-based right to control dialogue operations (except rollback, error reporting
and abrupt termination (abort)) via Session layer token mechanism, if Polarised
Control FU is selected.
Optional facilities for commitment, using CCR services.
Optional facilities for synchronisation of the activity of two participants by hand-
shake mechanism.
Optional facilities for performing unchained DTP-supported transactions.

Other ASEs required: ACSE and CCR ASE.
Connection phase: None.
Data transfer phase: —
Disconnection phase: None
Other features: Two-way exchange protocol for implementing handshake mech-

anism for synchronisation.
Coding: BASN.1 encoding of all APDUs.
Addressing: A-titles for initiating and recipient Application entities, and for the

corresponding TP users, are exchanged during dialogue establishment.
Fault tolerance: —

332 11 Application Protocols

Fig. 11.5 The logical struc-
ture of a MOTIS (after [191]).
UA are User Agents, which
handle the interaction with
the users. MTA are Message
Transfer Agents in the Mes-
sage Transfer System (MTS).

UA

MTA

MTA MTA

MTAMTA

User

UAUser

UAUser

UA User

MOTIS

MTS

11.3 Message Handling

Message handling is the term used to cover various forms of distribution of mes-
sages, together with the associated operations of accumulating replies, returning
receipts for delivery or indications of non-delivery, and so on. This includes point-
to-point electronic mail as a special case.

The general requirement, not always fulfilled in practical systems, is for a re-
liable distribution system which is resilient to failures, both in the orginal sender,
the ultimate addressee and the intervening systems, if any. This may sound like the
requirements for any other data communication system, but message handling also
involves presentation of the transmitted data in a manner which can be understood
by the human reader, and may involve features such as dealing with the names and
addresses of registered users of the service or delivery with absolute timing require-
ments. This means that the protocols involved belong in the Application layer, where
such concepts can be handled.

A message handling system is within ISO known as a Message Oriented Text In-
terchange System (MOTIS) [191] and within ITU-T as a Message Handling System
(MHS). The abstract architecture for such a system according to ISO and ITU-T is
shown in Figure 11.5. The architecture is based on the so-called User-Agent model
of a distributed system, in which a set of agents cooperate to perform some task
in a distributed manner. Note that this is substantially different from the architec-
tures on which the previous examples of this chapter have been based, since it is not
hierarchical. In the case of a MOTIS, the agents fall into two groups:

User Agents, UA, which mediate the interaction between the users of the mes-
sage system and the sub-system which actually transfers the messages.

Message Transfer Agents, MTA, which cooperate to provide the message trans-
fer service offered by the Message Transfer System, MTS.

In relation to the OSI Reference Model, these agents are all Application Entity
invocations.

11.3 Message Handling 333

It should perhaps be pointed out that there are many possible practical realisa-
tions of this architecture, ranging from simple systems where the User Agents and
Message Transfer Agents are processes within the same physical system, and the
users are human beings sitting at dumb terminals, through systems where each UA
is built into an intelligent terminal, for example based on a PC, to systems where
a powerful front-end contains multiple UAs. Likewise, the MTS may be anything
from local interprocess communication to a large public network.

11.3.1 The MOTIS Message Transfer Sub-layer

In relation to the layered OSI Reference Model, the MTS can be regarded as form-
ing a Message Transfer Sub-layer within the Application layer. The service offered
by this sub-layer to the User Agents includes all the basic facilities for exchange
of messages. Each message is identified by a unique message identification, sup-
plied by the MTS. Messages can have various types of contents, for example text,
graphics or encoded speech, and the various types may be encoded in various ways.
The content type, encoded information types, and any conversions performed on the
encoding as the message passes through the system, are all passed along with the
message. A message will only be passed on to a UA if the UA is registered as being
capable of dealing with messages of the given type and encoding. The originating
UA may, if necessary, forbid conversion of encodings. The originating and receiving
UA may also agree on some form of access management to maintain the security of
the information exchanged between them.

Messages are time-stamped by the MTS as they pass through the system, and
the time that the originating UA submitted the message and the time when it was
delivered to the receiving UA are indicated to the recipient. The time taken can be
controlled to a certain extent by giving the message a priority (known as the grade of
delivery), which can specify that the message is urgent (needing faster delivery than
normal) or non-urgent (able to tolerate slower delivery than normal). Optionally,
the MTS may be asked by the originating UA to defer delivery until after a certain
date and time, or to cancel the message if it cannot be delivered after a certain latest
delivery time. The originator may also ask the MTS to cancel a previous message
marked for deferred delivery, although this may not always work, as in a distributed
system the message may already have been delivered by the time the order to cancel
it arrives.

The originating UA can also specify what kind of information about the delivery
or non-delivery of the message is required. The default is for the originating UA to
be notified of non-delivery, and the apparent reason for it. Optionally, this notifi-
cation can be suppressed, or confirmation of delivery to the destination UA can be
supplied. The originator may also request having the contents of any undeliverable
message returned to him, and may request each message to be marked with an audit
trail, which records all the intermediate MTAs through which the message passes.

334 11 Application Protocols

There are various ways in which distribution of the message may be controlled.
Thus the originating UA may specify that the message is to be delivered to several
destination UAs, that a named distribution list is to be used to specify the destination
UAs, or that a given alternative recipient may be chosen if delivery to the specified
destination UA is not possible. A recipient UA may tell the MTS that messages in-
tended for it are to be redirected, and the originator can tell the MTS that a particular
message is not to be redirected, even if the intended recipient is not at the expected
location.

A recipient UA may also tell the MTS that messages, or messages with certain
content types or priorities, are to be held for delivery until some later time, and may
subsequently tell the MTS that it can now accept any held messages.

Finally, an originating UA may use various mechanisms for getting information
about the state of the MTS and the other UAs. For example, it can use a probe to
discover whether a message potentially could be delivered, and it can obtain in-
formation about the ability of a remote UA to deal with messages with particular
content types or in particular encodings.

An MTA is composed of invocations of three ASEs: A Message Transfer ASE
(MTSE) is responsible for the actual message handling, and makes use of facilities
offered by an ACSE and a Reliable Transfer ASE (RTSE [167, 168]). MTAs (or,
strictly speaking, MTSEs) communicate with one another by the so-called p1 pro-
tocol. This is illustrated in Figure 11.6. The p1 protocol is a very simple protocol,

MTSE MTSEMTSE MTSE

UA UA

RTSE RTSERTSE RTSE

ACSE ACSEACSE ACSE

p1 p1

p2

p1

P-layer

Fig. 11.6 Peer-to-peer protocols in MOTIS/MHS.
p1 is used for communication between MTAs and p2 for communication between UAs. MO-
TIS/MHS uses two other protocols, which are not strictly peer-to-peer protocols: p3, for com-
munication between a UA and an MTA, and p7, for communication between a UA and a Message
Store. These are usually realised as internal interface protocols.

similar in style to the ROSE protocol. It uses the reliable transfer (RT-TRANSFER)
facilities of the RTSE to transfer three types of MTS APDU:

1. Message APDUs, which carry submitted user messages and all the necessary
descriptive information and delivery instructions, as discussed above.

2. Report APDUs, which carry information about previously submitted user mes-
sages.

11.3 Message Handling 335

3. Probe APDUs, which are used to test whether it would be possible to transfer
a message of a particular type to a particular recipient, thus implementing the
probe facility mentioned above.

Additionally, the RT-OPEN and RT-CLOSE facilities are used to set up the initial
bindings when users sign on to the service, and the RT-TURN-PLEASE and RT-
TURN-GIVE facilities to control the direction of daa flow by a token mechanism.
The RTSE in turn makes use of the underlying facilities in the Presentation and
Session layers for token control, activity control and the setting of synchronisation
points.

We can summarise the protocol as follows:

Protocol example: ISO MOTIS Message Transfer (p1) Protocol (ISO10021-6,
ITU-T X.419) [193].

Service provided: Connection-mode facilities for reliable distribution of mes-
sages within an MTS.

Other ASEs required: ACSE and Reliable Transfer ASE.
Connection phase: None.
Data transfer phase: One-way alternating data transfer protocol based on token

control of dataflow.
Disconnection phase: None
Other features: Unacknowledged protocol for transfer of token. Application

layer routing.
Coding: BASN.1 encoding of all APDUs.
Addressing: A-titles (here known as MTA names) for the calling and respond-

ing MTA are exchanged when the initial bindings are set up via the RT-OPEN
operation, which is embedded in the operation of establishing the association.

Fault tolerance: —

Note that the p1 protocol does not itself offer any facilities for fault tolerance. These
are assumed to be supplied by the Reliable Transfer protocol on which the p1 pro-
tocol depends. Note also that the p1 protocol implements facilities for routing in
the Application layer. This very unusual feature follows from an assumption that
the mail system is divided into domains at the user level, and that the names and/or
addresses reflect this domain structure, which does not necessarily follow the corre-
sponding structure in the Network layer. For administrative reasons it is desirable to
use the mail domains as the basis for routing mail; in fact in many cases this will be
obligatory because transfers from one mail domain to another can only take place
via specific gateways between domains. Thus mail routing needs to be performed in
the Application layer rather than in the Network layer.

11.3.2 The MOTIS Interpersonal Messaging Service

Using the Message Transfer Service, the User Agents can cooperate to offer the
users an Interpersonal Messaging Service, IPMS, which supplements the Message

336 11 Application Protocols

Heading

Envelope

Body

Body part 1

Body part 2

}
} }Content =

IP Message

Field 1
Field 2

Field n

Fig. 11.7 The structure of an Interpersonal Message.

Transfer Service with facilities of a more user-oriented nature. The general form of
an interpersonal message (IPM) is illustrated by the example in Figure 11.7. The
message consists of a body, composed of one or more body parts, which contain the
actual information to be sent, together with a heading, composed of a sequence of
fields in which the originating user supplies information such as his own identifica-
tion and that of the intended recipient or recipients, the subject of the message, the
priority and security requirements and so on. The body parts may, as in the example
in the figure, be of different types and/or in different encodings, such as ordinary
text in various character sets, encoded speech, or pictures in various graphical rep-
resentations, such as Group 3 telefax or Videotex. They may also themselves be
interpersonal messages; this facility is used when forwarding received messages to
another user.

Replies indicating receipt or non-receipt of interpersonal messages are sent in
interpersonal notifications (IPNs), which are constructed by the IPMS itself, rather
than the users. Each notification consists of a number of common fields analogous
to the fields in the IPM heading, together with a set of receipt fields indicating the
time of receipt and so on, if the message was received, or a set of non-receipt fields

11.3 Message Handling 337

indicating the reason for non-receipt and possibly returning the unreceived message,
if the message was not received.

The protocol, known as p2 (Figure 11.6), is very simple. Each interpersonal mes-
sage is enclosed in an envelope, which contains information about the intended re-
cipients, content types, encodings, delivery instructions and so on required by the
MTS, and is transmitted to the recipient UA in a MTS Message APDU. Each inter-
personal notification is likewise transmitted to its recipient (the originating UA of
the message of which it notifies the receipt or non-receipt) in a Report APDU.

Protocol example: ISOMOTISInterpersonalMessaging(p2)Protocol(ISO10021-
7, ITU-T X.420) [194].

Service provided: Connection-mode facilities for reliable distribution of mes-
sages between end-users.

Other ASEs required: MTSE, ACSE and Reliable Transfer ASE.
Connection phase: None.
Data transfer phase: —
Disconnection phase: None
Other features: —
Coding: BASN.1 encoding of all APDUs.
Addressing: A-titles (here known as O/R names) for the originator and intended

recipient(s) of each IPM are included in the heading of the IPM and the common
fields of the IPN. These O/R names are assumed to follow the X.500 attribute-
based naming scheme described in Section 7.1.1. The corresponding O/R ad-
dresses (Section 7.2.3) are assumed to be available via an appropriate directory.

Fault tolerance: —

11.3.3 Internet Mail Protocols

Internet mail is based on a slightly different strategy from that seen in MOTIS/MHS,
but provides many of the same functions. The strategic difference is that the basic
mail distribution protocol transfers mail from the sender’s User Agent to a server
acting as destination MTA. This server places the mail in a mailbox associated with
the intended recipient, and a further protocol is used by the recipient’s User Agent to
extract arriving mail from the mailbox. The architecture of the system is illustrated
in Figure 11.8.

The basic protocol for mail distribution is the Internet Simple Mail Transfer Pro-
tocol (SMTP) [213], which is designed (like FTP) for use directly over TCP/IP.
As in the case of FTP, the protocol is very simple, and consists of a sequence of
two-way exchanges between the parties involved in the mail transfer, one of which
acts as Client and the other as Server. In each exchange, a command identified by
a 4-letter code goes in one direction, and an acknowledgment containing a 3-digit
reply code indicating the success or failure of the command is sent back in the other

338 11 Application Protocols

SMTP
Client

SMTP
Server

Mailbox

SMTP command

SMTP reply

Mailer
application program

Fig. 11.8 Typical internet SMTP client-server architecture

direction. In the basic SMTP protocol described in [213], commands were provided
which enable the user to:

• Sign on as Client to initiate a mail transfer dialogue (HELO).
• Give the address to which replies are to be sent (MAIL).
• Verify a user name (VRFY). The recipient replies with the full name and mailbox

address of the given user.
• Expand distribution lists (EXPN). The recipient replies with a list of user names

and mailbox addresses.
• Specify a destination address for a message (RCPT); several RCPT commands

may be given for the same message, making it is possible to send it to several
recipients.

• Send the text of a message (DATA); this message can only be a portion of text in
the US ASCII character set, in a 7-bit represention.

• Terminate the current dialogue (QUIT).

Reply codes between 200 and 299 indicate that the requested action has been suc-
cessfully completed; 300–399 indicate that the command was accepted, but more
information is needed to complete the action; 400–499 indicate a temporary er-
ror condition, where it may be meaningful to try to send the command again, and
500–599 indicate a permanent error condition, such as a missing mailbox, where it
currently makes no sense to send the command again.

An example of the exchanges involved in the use of basic SMTP has been shown
in Figure 8.4. As in the case of the MOTIS/MHS Interpersonal Messaging Service,
the actual message (sent after the DATA command) consists of a header, made up of
a sequence of header fields, followed by a body, containing the actual information to
be sent. The header fields may include such information as the time of submission
of the message, the identification of the sender, the intended recipient(s) for the
message and for any replies generated, the subject of the message, and references to
previous messages which are in some way related to this one. The originating MTA
is expected automatically to add a header field with a unique reference number to
identify the message, and any MTA which receives the message is expected to add
a further field which states where the message was received from.

Subsequently, a substantial set of extensions have been defined for SMTP. Clients
wishing to use the basic extensions must start their dialogue with a command EHLO
(instead of HELO) and a server which implements the extensions must recognise

11.3 Message Handling 339

this new command. The EHLO command carries information about which exten-
sions are required. An important example of when this is necessary is when char-
acters are to be transmitted in an 8-bit representation. An important group of more
advanced extensions are the group known as Multipurpose Internet Mail Extensions
(MIME), which enable messages to contain more complex data than simple ASCII
texts, by allowing:

1. Message bodies containing text in character sets other than US ASCII.
2. A series of formats for non-text message bodies, such as images, audio and video.
3. Multi-part message bodies.
4. Message headers in character sets and encodings other than US ASCII.
5. Authenticated and encrypted message bodies.

MIME encoding has been described in Section 8.4.1, and an example of a complete
message, with header fields and several body parts using MIME encoding, can be
seen in Figure 8.5. Other SMTP extensions allow for more informative error codes,
return of delivery status, transfer of information about message sizes and command
pipelining.

The SMTP protocol can be summarised as follows:

Protocol example: Internet Simple Mail Transfer Protocol, SMTP (Internet Stan-
dard 10, RFC821) [213], with extensions described in RFC1869, RFC1870,
RFC1891, RFC2034, RFC2045–2049 and RFC2197.

Service provided: Connection-mode facilities for distribution of messages be-
tween an end-user and a mailbox associated with another end-user.

Other ASEs required: —
Connection phase: Two-way exchange protocol (HELO or EHLO).
Data transfer phase: Sequence of two-way exchanges to specify recipient (or

recipients), address for replies, subject, and actual data.
Disconnection phase: Two-way exchange protocol (QUIT).
Other features: Timestamping of messages. Return of delivery status, return of

enhanced error codes, transfer of information about message sizes, command
pipelining, if the use of appropriate SMTP extensions has been agreed in con-
nection phase.

Coding: ASCII encoding of all PDUs, possibly with MIME encoding (see Sec-
tion 8.4.1) if use of appropriate SMTP extensions has been agreed in connection
phase.

Addressing: Internet address identifies destination system and user name identi-
fies a mailbox which is unique for the addressee.

Fault tolerance: —

Since SMTP only provides for transfer of messages from an end-user to a mail-
box belonging to another end-user, the addressee’s User Agent needs to provide
facilities for extracting messages from this mailbox and presenting them to the
addressee. As stated above, this requires an additional protocol for communica-
tion between the recipient’s User Agent and the destination MTA. Commonly used
protocols for this purpose are POP [222] and IMAP [226]. Both these are simple

340 11 Application Protocols

Client-Server protocols, where the User Agent acts as Client and the MTA mailbox
system as Server. We shall not describe them in detail here.

While basic SMTP only offers a small subset of the facilities found in MO-
TIS/MHS, SMTP with MIME offers a substantial subset of these facilities. How-
ever, SMTP does not itself contain mechanisms which give fault tolerance, so un-
like MOTIS/MHS the reliability of the protocol is essentially based on the fact that
the underlying Transport service makes use of the comparatively fault-tolerant TCP
protocol. Obviously the user has to decide to a certain extent whether simplicity and
cheapness outweigh lack of facilities and potential loss of messages.

11.4 Hypertext and the World Wide Web

The World Wide Web is a distributed system which offers global access to informa-
tion. The basic architecture follows a Client-Server model, with a very large number
of servers, on which the information is stored, offering uniform access to the clients.
The unit of information generally corresponds to a file on the server, and is known
as a (Web) resource.

11.4.1 Uniform Resource Identifiers

Uniform access is assured by the use of a unified, global naming scheme in which
each resource is identified by a Uniform Resource Identifier (URI) which specifies
a so-called scheme identifying the access protocol to be used, the server (with op-
tional user information and information about the port to be accessed), and the path
to the file. In addition, the URI may provide a query to be interpreted by the re-
source and/or specify a fragment which identifies a part of the resource. A slightly
simplified syntax (in Extended BNF notation) for URIs is given in Figure 11.9; a
more complete description can be found in [250].

Some examples of URIs are as follows:

http://www.usenix.org/membership/renew.html
Refers to the resource to be found via path /membership/renew.html on the
server with hostname www.usenix.org, to be accessed using the HTTP protocol.

http://abc.com/˜smith/index.html
Refers to the resource to be found via the path ~smith/index.html on the
server with hostname abc.com, to be accessed using the HTTP protocol.

http://abc.com:80/˜smith/index.html
Refers explicitly to port 80 (the default port number for the HTTP protocol),
but is otherwise identical to the second example.

http://www.bahn.de/bin/query?text=Berlin&maxresults=10
Refers to the resource to be found via path /bin/query on the server with host-

11.4 Hypertext and the World Wide Web 341

absoluteURI ::= scheme "://" server path ["?" query] ["#" fragment]

server ::= [userinfo "@"] hostport

hostport ::= host [":" port]

host ::= hostname | IPv4address | IPv6address

port ::= { digit }*
path ::= "/" { segment "/" }*
userinfo ::= { uchar }*
segment ::= { pchar }*
query ::= { uric }*
fragment ::= { uric }*
hostname ::= { domainlabel "." }* toplabel

domainlabel ::= alphanum | alphanum { (alphanum | "-") }* alphanum

toplabel ::= alpha | alpha { (alphanum | "-") }* alphanum

alphanum ::= alpha | digit

nchar ::= alpha | digit | "-" | "_" | "." | "!" |

"~" | "*" | "’" | "(" | ")" | ":" |

"&" | "=" | "+" | "$" | ","

uchar ::= nchar | ";"

pchar ::= nchar | "@"

uric ::= nchar | ";" | "@" | "/" | "?"

alpha ::= "A" | "B" |...| "Z" | "a" | "b" |...| "z"

digit ::= "0" | "1" |...| "9"

Fig. 11.9 Syntax of Uniform Resource Identifiers. The syntax is given in EBNF, where [x]

indicates an optional syntactic element x, and {x}* a repetition of 0 or more elements.

name www.bahn.de, to be accessed using the HTTP protocol.
The query text=Berlin&maxresults=10 will be passed on to the resource.

ftp://ftp.isi.edu/in-notes/rfc2396.txt
Refers to the resource to be found via the path /in-notes/rfc2396.txt on
the server with hostname ftp.isi.edu, to be accessed using the FTP protocol.

telnet://ratbert.comfy.com/
Refers to the resource to be found via the path / on the server with hostname
ratbert.comfy.com, to be accessed using the TELNET protocol.

Hostnames are expressed using the standard Internet naming convention presented
in Chapter 7. Paths are expressed relative to some base defined within the server.
User information, userinfo, is typically a user identifier, possibly with security-
related parameters required to gain access to the resource.

342 11 Application Protocols

HTTP
Client

HTTP
Server

Web browser
application program

HTTP request

HTTP response Resource

Fig. 11.10 Typical Internet HTTP client-server architecture

11.4.2 Hypertext Transfer Protocols

Hypertext is a generic term for the content of documents which potentially may
involve various types of information, such as:

• Static elements of various types, such as text, images and sounds.
• Dynamic elements, which are to be created ’on the fly’ by the execution of

programs.
• Embedded links to resources containing further information. This information

may be intended to be accessed automatically when the document containing the
link is accessed, or it may require some action on the part of a human user in
order to activate the link.

The task of a hypertext transfer protocol is to offer a service for storing and re-
trieving hypertext documents. The classic example is currently the Internet/DoD
Hypertext Transfer Protocol (HTTP) [43]. This makes use of a series of two-way
exchanges between a Client, which is typically integrated into a Web browser, and
one or more Servers, in this context usually known as Web servers. In each ex-
change, the Client sends a request which identifies a resource by giving its URI,
specifies an action (known as a method) to be performed on the resource, and op-
tionally gives parameters describing the action in more detail. The Server replies
with a Response which gives a status code for execution of the action, and possi-
bly includes further information about the resource. This information may include
the content of the resource and/or other parameters. The overall architecture of the
system is illustrated in Figure 11.10.

A very simple example of an HTTP exchange is shown in Figure 11.11. The
GET request specifies the URI from which the resource is to be retrieved and the
protocol version to be used (here version 1.1). The response is a code (200 OK)
indicating success, followed by further PCI in the form of header fields associated
with the response and the actual content of the resource, which in the example is a
document in Hypertext Markup Language (HTML). The header fields are terminated
by a blank line. The document contains an embedded link to a further resource, in
this case containing an image at URI http://www.wpooh.org/pooh.img. It is
the client’s task to fetch this further resource when required. Normally, the Web
browser or other program in which the client is embedded will determine when this
will take place, possibly after consulting the user. In more complex cases, documents
may also contain references to programs to be executed by the client (as so-called

11.4 Hypertext and the World Wide Web 343

GET http://www.wpooh.org/~pooh/index.html HTTP/1.1

Host: www.wpooh.org

HTTP/1.1 200 OK

Date: Thu, 8 Aug 2002 08:12:31 EST

Content-Length: 332

<html>

<head>

<title>Pooh’s Homepage</title>

</head>

<body>

<h1 align=center>Winnie the Pooh</h1>

<p>

Our little bear is short and fat

Which is not to be wondered at.

He gets what exercise he can

By falling off the ottoman.

</p>

</body>

</html>

Fig. 11.11 Simple exchange of messages in HTTP.
The request from the client to the server is in typewriter font and the reply from server to client
is boxed in typewriter font. The actual content of the resource within the box is in italic

typewriter font.

applets) or the server (as so-called active server pages or server scripts), in order to
produce parts of the content of the resource dynamically.

The standard methods available via HTTP and their functions are:

GET Retrieve content of resource.
PUT Store new content in resource.
DELETE Delete resource.
OPTIONS Request information about resource or server.
HEAD Get headers (but not actual content) of resource.
POST Transfer information to an application, for example for transmission

as mail, processing as a Web form, etc.
TRACE Trace route to server via loop-back connection.

Obviously, these methods are only available on a given server if the user on the
client has suitable authorisation from the server.

The numerical response codes 100–199 indicate an informational response, 200–
299 indicate that the requested action was successfully completed, and 300–399 that
further action is needed to complete the request. Codes 400–499 indicate a client
error, such as faulty request syntax or missing authentication, while codes 500–599
indicate situations where the server could not fulfil an apparently valid request.

344 11 Application Protocols

GET pub/WWW/xy.html HTTP/1.1

Host: www.w3.org

Accept: text/html, text/x-dvi;q=0.8

Accept-Charset: iso-8859-1, unicode-1-1;q=0.5

Accept-Encoding: gzip, identity;q=0.5, *;q=0

Accept-Language: da, en-gb;q=0.8, en;q=0

Range: bytes=500-999

Cache-control: max-age=600

Fig. 11.12 A more complex HTTP Get request

More complex forms of request allow the client to specify more closely what is
required or to describe its own abilities. This is done by following the main request
with further PCI in the form of header fields, as in the conventions for using MIME.
It is possible, for example, for the client to:

• Define acceptable media types (header field Accept), i.e. media types which
the client-side system can deal with. These are described using a notation sim-
ilar to that for MIME content-types, for example as text/html, text/x-dvi,
video/mpeg and so on.

• Define acceptable character sets (header field Accept-Charset, specifying a list
of one or more character sets).

• Define acceptable natural languages in which the document may be written
(header field Accept-Language, specifying a list or one or more language
codes).

• Define acceptable forms of compression or encoding, such as gzip or the use
of Unix compress (header field Accept-Encoding, specifying a list of one
or more encodings). The encoding identity means that no compression takes
place.

• Specify that only part of the document is to be transferred (header field Range,
specifying a range in bytes).

• Restrict theoperationtoresourceswhichobeygivenrestrictionswithrespect totheir
date of modification (header fields If-Modified-Since and If-Unmodified-
Since, specifying a date and time).

• Control caching of the document (header field Cache-Control, specifying rules
such as the maximum age for which a cached document is valid (max-age), or
giving directions not to store a document (no-store) or always to retrieve it
from the original server rather than a cache (no-cache)).

• Provide information for authorisation purposes (see Section 11.4.4 below).

An complete example of a more complex GET request is shown in Figure 11.12.
This specifies that the resource at URI http://www.w3.org/pub/WWW/xy.html
should be retrieved using HTTP version 1.1. The further header fields are to be
understood as follows:

• The client can accept contents in HTML or DVI syntax. The q-parameter, here
q=0.8, associated with the DVI media type means that the client will only give

11.4 Hypertext and the World Wide Web 345

HTTP/1.1 200 OK

Date: Thu, 8 Aug 2002 08:12:31 EST

Content-Length: 332

Content-Type: text/html; charset=iso-8859-1

Content-Encoding: identity

Content-Language: en

Content-MD5: ohazEqjF+PGOc7B5xumdgQ==

Last-Modified: Mon, 29 Jul 2002 23:54:01 EST

Age: 243

<html>

...

</html>

Fig. 11.13 A more complex response to a GET request in HTTP.
The actual content of the document (in italic typewriter font) has been abbreviated in the
figure.

files of this type a relative preference of 0.8. Absence of a q-parameter implies
q=1.0.

• The client will accept character sets iso-8859-1 and unicode-1-1, but will only
give the latter a relative preference of 0.5.

• The client will accept gzip compression with preference 1.0, while the identity
transformation has preference 0.5 and all other forms of compression (denoted
by *) should be avoided (q=0).

• The client will accept documents in Danish (da) with preference 1.0, British Eng-
lish (en-gb) with preference 0.8, and all other forms of English should be avoided
(q=0).

• Bytes 500 to 999 (inclusive) of the document are to be retrieved.
• The document can be taken from a cache unless the cached copy has an age

which exceeds 600 seconds.

More complex responses than in Figure 11.11 can be used to inform the client
about the content or encoding of the document, give the reasons for an error re-
sponse, or provide information about the server itself. As in the case of requests,
this information is provided in the form of header fields. The response shown in Fig-
ure 11.11 is in fact the minimum one, with header fields giving only the obligatory
information: The length of the document retrieved and the date (and time) at which
retrieval took place. Figure 11.13 shows a more complex response which could have
been received after the same request, if the server had included some of the optional
header fields. The Content-Type, Content-Encoding and Content-Language
give the actual values of these parameters and should be expected to correspond to
the acceptable values, if any, specified in the request. The Content-MD5 field gives
a base64 encoded MD5 checksum for the content. The Age field is included if the
content has been taken from a cache, and gives the length of time in seconds that
the content has been stored in the cache. The Last-Modified field gives the date
and time at which – to the server’s best knowledge – the content of the resource was

346 11 Application Protocols

last modified. Such complex responses are, of course, essential when the request is
OPTIONS, where the purpose is to obtain information about the capabilities of the
server, such as which content types or encodings it is able to handle.

The Internet HTTP protocol can be summarised as follows:

Protocol example: Internet Hypertext Transfer Protocol, version 1.1 (RFC2616)
[43].

Service provided: Connection-mode facilities for information storage and re-
trieval.

Other ASEs required: —
Connection phase: —
Data transfer phase: Two-way exchange protocol for read and write operations

on named resources.
Disconnection phase: —
Other features: Two-way exchange protocol for deletion of resources. Two-way

exchange protocol for querying properties of resources and/or systems on which
resources are stored. Two-way exchange protocol for transfer of documents for
processing.
Timestamping of messages. Control of caching. Specification of acceptable mes-
sage types, languages, content encodings, character sets. Challenge-response
mechanism for authentication of client (see Section 11.4.4).

Coding: ASCII encoding of all PDUs.
Addressing: Uniform Resource Identifier (URI) identifies destination system and

path to resource.
Fault tolerance: Resistance to corruption via optional MD5 checksumming of

resource content during transfer.

11.4.3 Web Caching

Since most distributed information retrieval applications involve transfer of consid-
erable amounts of data through the network, caching is commonly used in order to
reduce the amount of network traffic and reduce response times. HTTP, which is
intended to support such applications, therefore includes explicit mechanisms for
controlling the operation of caching. Since these illustrate a number of ideas which
are important in several application areas, they will be described in some detail here.

In general, caching mechanisms in information systems attempt to achieve se-
mantic transparency for the cache. A cache is said to be semantically transparent
when its operation affects neither the requesting client nor the server from which the
resource originates, except with respect to improving performance. In other words,
the client receives exactly the same response (ignoring possible differences in hop-
by-hop headers) as it would have received if the request had been handled directly
by the server which holds the definitive copy of the resource – the so-called origin
server. If transparency is – for whatever reason – not required by the client, or can-
not be achieved by the cache or the server, then HTTP requires the application user
to be warned.

11.4 Hypertext and the World Wide Web 347

Cache

Client Client Client

Proxy

Cache

Cache

Client Client Client

Proxy

Cache

Client Client Client

Proxy

2. Ask proxy caches
 on path to server

Server

Client Client Client

Proxy

1. Look in local cache

3. Pass request to server

Fig. 11.14 Caching of Web resources by proxies

HTTP allows for several caches to be in use on the path from the client to the
origin server. Although this will be unnecessary in simple cases, it will typically be
useful when the request is passed to the server via a series of intermediate systems.
Such an intermediate system may for example be a:

Proxy: which collects up requests from (and distributes responses to) one or more
clients, and makes a new request by acting as client for a further server. A trans-
parent proxy just passes on the request (and the returning response) unaltered,
whereas a non-transparent proxy creates a modified request, typically in order to
provide some added value.

Gateway: which acts as an intermediary for another server, but (unlike a proxy)
appears to the client to be the desired origin server.

Tunnel: which acts as a blind relay between two connections.

A scenario in which several proxies, each serving several clients, and each contain-
ing a cache, are involved in responding to a request, is illustrated in Figure 11.14.
A request from one of the clients will in the first instance be collected up by the
proxy to this client. If a proxy has no fresh copy of the requested resource in its
cache, it attempts to pass the request on to another proxy on the path to the origin
server. If all of these attempts fail to locate a fresh copy of the document, the origin
server itself is ultimately contacted. The response returns to the original client by
the reverse route.

A cache must respond to a request with the most up-to-date response that is
appropriate to the request and which meets at least one of the following conditions:

1. The response has been checked for equivalence with what the origin server would
have responded. This check is performed by using the revalidation mechanism
described below.

348 11 Application Protocols

2. The response is “fresh enough”, in the sense that its age does not exceed its
freshness lifetime.

3. The response is already an appropriate error response message or a response
indicating that the content has not been modified or that the request should be
redirected to another proxy.

Revalidation is based on comparison of a validator associated with the cache entry
with the corresponding validator associated with the resource on the origin server.
The two most commonly used validators in HTTP are:

• The Last-Modified entity-header value. A cache entry is considered valid if the
entity has not been modified since the date and time given by its Last-Modified
value.

• The Etag (entity tag) entity-header value. This is a reference tag which is unique
to a particular version of the entity.

The age calculation used to determine freshness takes as its starting point the Age
header field included in all responses taken from a cache, and the Date header field
which gives the time at which the origin server generated the original response.
The Age field gives the cache’s estimate of how much time has passed since the
response was generated or revalidated by the origin server. When HTTP/1.1 is in
use, this estimate, say a, is essentially the sum of the time that the response has been
stored in each of the caches along the path from the origin server, plus the time spent
in transit through the network between caches. An independent estimate of the age
can be evaluated as the difference between the local time when the response arrives,
say tresp, and the Date value, d. Thus a conservative estimate of the age is:

ar = max(tresp−d, a)

Now if the network can impose delays, there may be a discrepancy between the
value d supplied by the server and the time at which the response arrives at the first
cache. This response delay can be estimated by the cache as (tresp− treq), where treq
is the time at which the request was issued by the system containing the cache. So a
corrected estimate of the age at the time when the response arrived is:

ac = ar +(tresp− treq)

Finally, the cache’s age estimate must be corrected for the residence time, which is
the time which has passed efter the arrival of the response, until the cache has to
retrieve the entity in order to send it to a client. At local time tloc, the cache’s final
estimate of the age is therefore:

age = ac +(tloc− tresp) = ar +(tloc− treq)

To ensure that all these time estimates are reliable, it is assumed that the systems
concerned all use a clock synchronisation protocol, such as NTP.

To decide whether a give cache entry is valid, it is necessary to compare the age,
evaluated as above, with an estimate of the freshness lifetime, flim, for the response.

11.4 Hypertext and the World Wide Web 349

There are three basic ways in which this can be evaluated, which are used in the
following order of priority:

1. If the Cache-Control header field of the response includes a max-age value,
amax, then this value is taken as the limit for acceptable age:

flim = amax

2. If an Expires header field appears in the response, then the age limit is taken as
the difference between the date and time specified in the Expires field, texp, and
the current, local date and time, tloc.

flim = texp− tloc

3. A heuristic method can be used to estimate flim.

The basic criterion for validity of a cache entry is then that (age < flim). However,
the cache control mechanisms offered in HTTP/1.1 are very general, and allow the
client to deviate from this simple criterion in various ways by specifying, for exam-
ple, that:

• The cached value must be valid for at least a given further period of n seconds
(min-fresh=n).

• The cached value is acceptable even if it is outdated, as long as its freshness
lifetime has not been exceeded by more than n seconds (max-stale=n).

• Cached values are not to be returned. Instead, values are always to be retrieved
from the origin server (no-cache). This strategy is commonly known as end-to-
end reload.

• Values are to be taken from the cache and not from the origin server (only-if-
cached). This strategy is useful at times when the network suffers from poor
connectivity or similar unreliability.

• Cached values are always to be revalidated with the next cache or the server
(max-age=0). This strategy is commonly known as end-to-end revalidation.

Similarly, the protocol allows the origin server to insist that each cache should al-
ways revalidate any copy of a response before returning it to the client. This is
done by including a must-revalidate directive in the response from the server.
Likewise, a proxy-revalidate directive can be used by the server to ensure that
proxies will always revalidate a cache entry for each of the clients serviced by the
proxy.

The discussion above mostly applies to responses generated by use of the GET
or HEAD methods, which are used to retrieve information. Methods such as PUT,
DELETE and POST, which are intended to modify or delete information, must cause
all cache entries for the relevant entity to be invalidated, either by removing them
from the cache or by marking them as invalid (and thus forcing revalidation to take
place next time the entity is to be retrieved). All methods other than GET and HEAD
must also cause any changes in the actual Web resource to be written through to
the origin server, so that this always contains updated values for the content of the

350 11 Application Protocols

resource. Other styles of cache, such as the write-back or copy-back caches used
in some types of application, in which it is possible to delay updates until some
convenient later moment, are not permitted in systems which use HTTP.

11.4.4 HTTP Authentication

In order to protect the server against unauthorised access to its resources, and to pro-
tect the client against fake servers, HTTP includes a challenge-response mechanism
for authenticating the client to the server and (optionally) vice versa [49]. This can
be used with all the HTTP methods, but is of course especially important when the
client uses methods such as PUT, POST or DELETE which can change the state of
the resources.

The basic mechanism for use between a client and server is:

• The Challenge is sent by the server in a WWW-Authenticate header field of an
HTTP response with error code "401 Unauthorized", in response to a client
HTTP request which refers to a protected resource.

• The Response is sent in an Authorization header field of an HTTP request
from the client. This request is in other respects just a repeat of the original client
request.

• If the Response is satisfactory, the server sends a positive HTTP response; if
not, it again responds with error code "401 Unauthorized". If mutual authen-
tication is required, the server includes an Authentication-Info header field,
including a MutualResponse in the positive HTTP response.

Two challenge-response schemes are defined:

Basic: The Challenge consists of a string which identifies the realm of the protected
resource.TheResponsesentby theclientconsistsofauseridandpassword encoded
in a base64 encoding. The entire exchange is illustrated in Figure 11.15(a). In this
figure, the authorisation code dGJvbmVzOkFscGgwMm5VbT8= is the base64 en-
coding of the string tbones:Alph02nUm?, where the user name is tbones and
the password is Alph02nUm?.

Digest: The Challenge consists of a string identifying the realm of the protected
resource, a nonce and possibly details of the message digest algorithm to be
used in creating the Response. The default message digest algorithm is MD5 .
In its simplest form, the Response sent by the client contains the realm, nonce,
username, and the message digest of a suitable secret known to the client. A
standard choice for the secret is the user password concatenated with the realm
and userid. The nonce and message digest can be given in base64 encoding or
as a sequence of hexadecimal digits. The server will check that the value of the
digest corresponds to the expected value for the named user. The entire exchange
is illustrated in Figure 11.15(b).
If mutual authentication is required, the MutualResponse finally sent by the
server to the client will include a message digest of some second secret shared by

11.4 Hypertext and the World Wide Web 351

Step Direction Request or response

(a) 1. request PUT /groggy/gnu.html HTTP/1.1

Host www.goofy.dtu.dk

[New content of resource]

2. response HTTP/1.1 401 Unauthorized

Date: Thu, 29 Nov 2007 06:31:59 EST

WWW-Authenticate: Basic realm="GnuProtect"

3. request PUT /groggy/gnu.html HTTP/1.1

Host www.goofy.dtu.dk

Authorization: Basic dGJvbmVzOkFscGgwMm5VbT8=

[New content of resource]

4. response HTTP/1.1 200 OK

Date: Thu, 29 Nov 2007 06:32:05 EST

(b) 1. request PUT /groggy/gnu.html HTTP/1.1

Host www.goofy.dtu.dk

[New content of resource]

2. response HTTP/1.1 401 Unauthorized

Date: Thu, 29 Nov 2007 06:35:01 EST

WWW-Authenticate: Digest realm="GnuProtect" algorithm=MD5

nonce="Jap3Zyh75Mmbl+w..."

3. request POST /groggy/gnu.html HTTP/1.1

Host www.goofy.dtu.dk

Authorization: Digest realm="GnuProtect" algorithm=MD5

nonce="Jap3Zyh75Mmbl+w..."

response="2629fae49393a...c591"

uri="/groggy/gnu.html" username="tbones"

[New content of resource]

4. response HTTP/1.1 200 OK

Date: Thu, 29 Nov 2007 06:35:18 EST

Fig. 11.15 HTTP authentication: (a) Basic scheme; (b) Digest scheme. Only selected header fields
are shown

the client and server. This demonstrates that the server knows the client’s secret,
in accordance with the general principles for mutual authentication discussed in
Section 6.4. More details can be found in [49].

It should be noted that neither of these schemes of challenge-response is very se-
cure. In the Basic scheme, the userid and password are essentially sent in cleartext
through the network. The Digest scheme is stronger, since an intruder – instead of
obtaining the user’s full credentials – can in general only repeat the current transac-
tion. However, this is still dangerous if the transaction involves the PUT, POST or
DELETE method. Neither of the schemes ensures confidentiality of the transaction.
Techniques for achieving a higher level of security are discussed in Section 11.4.6.

The discussion above applies to authentication between a client and the origin
server. As we have discussed in Section 11.4.3, there may also be one or more

352 11 Application Protocols

proxies on the path to the server which may attempt to respond to the client’s re-
quest. These proxies may also demand that the client authenticate itself. The mech-
anism for this is very similar to that used with servers, except that a proxy will
include its Challenge in a Proxy-Authentication header field in a "407 Proxy
Authentication Required" error response, and the client must then send its Re-
sponse in a Proxy-Authorization header field in the renewed client request.

11.4.5 Stateful HTTP and Cookies

In the basic form of HTTP described in [43], successive request/response exchanges
between a client and a server are assumed to be independent of one another, and the
protocol does not assist the client or server to build up a memory of what information
has been exchanged. The protocol is said to be stateless. However, many Web-based
applications rely on the use of a sequence of related requests and responses, which
make up a session. For instance, in a commercial transaction a customer using an
HTTP client will often need to provide information via a series of Web forms, which
are successively sent to the server in POST requests, with responses being returned
from the server to the client. The application dealing with these forms needs to be
sure that they all belong to the same customer’s transaction. For this to be possible
with a stateless protocol, the client would have to repeat information about the cus-
tomer and other details of the transaction in each request sent to the server during a
session. This can be very inefficient.

The concept of cookies was introduced to deal with this problem. The original
proposal for a cookie mechanism was developed by Netscape, and has subsequently
been refined for use with HTTP/1.1 [247]. As we have seen in Chapter 4, it is in
general necessary for the communicating parties to include more PCI in their PDUs
in order to inform one another about their respective states. In HTTP, this is done by
including additional header fields in the requests and responses. The cookie mech-
anism utilises two new header fields, in order to enable the client and server to
exchange information about the state of a session:

Cookie: included in a request sent by the client, in order to inform the server
about all cookies relevant to the current session.

Set-Cookie2: included in a response sent by the server, in order to request the
client to store more state information, in the form of one or more (new or modi-
fied) cookies described in the header field.

An example of a complete session involving a customer purchase can be seen in
Figure 11.16. During this session, the server sends the client three cookies, named
Customer, Catitem and Delivery, and the client uses these in subsequent re-
quests to the server. Each cookie is described by a name and a list of attributes, each
specified by a name and (in most cases) a value. When setting a cookie, the server
can, for example, include the attributes:

11.4 Hypertext and the World Wide Web 353

Step Direction Request or response

1. request POST /bigbuy/login HTTP/1.1

[data in form to identify customer]

2. response HTTP/1.1 200 OK

Set-Cookie2: Customer="Fred-Snooks-261";

Version="1"; Path="/bigbuy"

3. request POST /bigbuy/catalog HTTP/1.1

Cookie: $Version="1";

Customer="Fred-Snooks-261"; $Path="/bigbuy"

[data in form for items selected by customer]

4. response HTTP/1.1 200 OK

Set-Cookie2: Catitem="Catfood-053";

Version="1"; Path="/bigbuy"

5. request POST /bigbuy/delivery HTTP/1.1

Cookie: $Version="1";

Customer="Fred-Snooks-261"; $Path="/bigbuy"

Catitem="Catfood-053"; $Path="/bigbuy"

[data in form to select delivery method]

6. response HTTP/1.1 200 OK

Set-Cookie2: Delivery="Bike-001";

Version="1"; Path="/bigbuy"

7. request POST /bigbuy/checkout HTTP/1.1

Cookie: $Version="1";

Customer="Fred-Snooks-261"; $Path="/bigbuy"

Catitem="Catfood-053"; $Path="/bigbuy"

Delivery="Bike-001"; $Path="/bigbuy"

[data in form to complete purchase]

8. response HTTP/1.1 200 OK

Fig. 11.16 An HTTP session with cookies. Only cookie-related header fields are shown

• Version, specifying the version of the cookie specification in use. This attribute
is mandatory.

• Domain, specifying the domain for which the cookie is valid.
• Path, specifying the subset of URLs on the origin server to which the cookie

applies.
• Port, specifying a list of one or more ports to which the client may return the

cookie in a request header. If this attribute is omitted, any port can be used.
• Max-age, specifying the time for which the cookie is valid, defined and evaluated

as for HTTP caching.
• Comment, giving information about how the server intends to use the cookie.

Alternatively, the CommentURL attribute can be used to refer to a URL where this
“cookie policy” is described.

Since information held in cookies may include personal user data or confidential
material, it is important to be able to control the security aspects of the handling of
cookies. The Comment and CommentURL attributes are intended to provide the client
application with information which can be used to decide whether or not to accept
the cookie. In addition, the server may specify that the cookie should be discarded

354 11 Application Protocols

as soon as the session terminates (atttribute Discard), or that the client application
should send the cookie to the server in a secure manner (attribute Secure), in order
to ensure confidentiality and integrity. The Internet cookie specification [247] does
not say how this is to be done; some suitable methods for achieving HTTP security
in general are discussed in Section 11.4.6 below.

When the client sends information to the server during a session which uses
cookies, it can similarly include the Version, Path, Domain and Port attributes
in the Cookie header field of its HTTP request. When sent from the client, these
must match the values which the server specified should be set in the cookie, and
the server will check that this is the case, in order to ensure that the client is referring
to a cookie which was in fact supplied by the server. Cookies for which the server
has specified Discard will, of course, be discarded when the user session ends, but
cookies can in general have a much longer lifetime, and can then be re-used from
session to session.

For security reasons, the client will correspondingly check all cookie descriptions
arriving from a server in HTTP responses. It is required to reject (i.e. refuse to
store) any cookie whose description in the Set-Cookie2 header field of the HTTP
response fails to meet all of the following conditions:

• The Path attribute must be a prefix of the URI in the corresponding HTTP re-
quest.

• The Domain attribute must contain embedded dots (or be .local).
• The Domain attribute must domain-match the hostname of the host which gener-

ated the request.
• The port to which the request was sent must be one of those in the Port attribute.

Caching can in principle also introduce a security risk by causing copies of cook-
ies to be left in caches round and about in the Internet. This effect cannot be con-
trolled via the cookie-related header fields, but requires the client and server to use
appropriate Cache-control header fields, such as:

• Cache-control: no-cache which forbids caching.
• Cache-control: private which forbids caching of requests or responses

in shared caches.
• Cache-control: no-cache="set-cookie2" which forbids caching of the

Set-Cookie2 header field

11.4.6 Secure HTTP

The basic Hypertext Transfer protocol only supports a very limited form of security,
in the form of credentials which may be supplied by the client in order to authenti-
cate itself to a server, and a challenge mechanism which the server may use in order
to force the client to authenticate itself. Two strategies are currently available for
achieving additional security in Web transactions:

11.4 Hypertext and the World Wide Web 355

1. Use the TLS protocol suite described in Section 10.7 in order to offer a secure
Transport service on which to base the operation of HTTP. Web servers which
use this strategy are identified by URIs in which the protocol scheme is https,
and use port 443 as the default TCP port, so that secure and insecure traffic can
be handled separately.

2. Use Secure HTTP (S-HTTP [246]) in order to introduce security functions within
the Application layer itself. Web servers which use this strategy are identified
by URIs in which the protocol scheme is shttp. They continue to use default
port 80, but use a different syntax for requests and responses, so that secure and
insecure traffic can be handled separately.

Both TLS and S-HTTP offer transaction confidentiality, authentication, integrity
and non-repudiation of origin. This makes them suitable for use in information sys-
tems in which confidential information is exchanged. A typical example is a system
in which personal information, such as credit card numbers, bank information, so-
cial security numbers or the like have to supplied to or retrieved from a Web site.

S-HTTP makes use of a new method, denoted Secure, for handling information
in a secure manner, and uses the protocol designator Secure-HTTP/1.4 in both
requests and responses for this method. Typically, the method is used to transfer en-
capsulated requests and responses for standard HTTP methods, such as GET, PUT,
POST and so on. A number of additional header fields are defined for use with
the Secure method, in order to specify the capabilities of the client and server with
respect to security functions. These include the ability for the client to:

• Define acceptable ways of adding encryption and authentication (header field
Content-Privacy-Domain). There are two current possibilities: to use Crypto-
graphic Message Syntax (CMS [244], a further development of PKCS-7 [230])
and to use MOSS (essentially part of S/MIME).

• Define the type of the encapsulated content (header field Content-Type), which
in most cases will be message/http.

• Supply a MAC for the encapsulated content (header field MAC-Info).
• Specify which algorithms may be used for:

– Signing (SHTTP-Signature-Algorithms).
– Forming message digests (SHTTP-Message-Digest-Algorithms).
– Encrypting message content (SHTTP-Symmetric-Content-Algorithms).
– Encrypting header fields (SHTTP-Symmetric-Header-Algorithms).
– Forming MACs (SHTTP-MAC-Algorithms).

• Specify which forms of security to apply (SHTTP-Privacy-enhancements),
where the possibilities are signing, encryption and authentication.

• Specify which types of certificate may be used (SHTTP-Certificate-Types),
where the possibilties are X.509 and X.509/v3.

• Specify which key exchange algorithms may be used (SHTTP-Key-Exchange-
Algorithms), where the possibilities are Diffie-Hellman, RSA, Inband (key
transport within the encapsulated HTTP message) and Outband (agreed by means
lying outside the protocol).

356 11 Application Protocols

(a) GET secret.html HTTP/1.1

Host: www.e-trade.dk

Date: Thu, 8 Aug 2002 08:12:31 EST

Security-Scheme: S-HTTP/1.4

Accept: text/html

Accept-Charset: iso-8859-1

Accept-Language: *

(b) Secure * Secure-HTTP/1.4

Content-Type: message/http

MAC-Info: 31ff8122,rsa-md5,b3ca4575b841b5fc7553e69b0896c416,outband

Content-Privacy-Domain: CMS

MIAGCS.....

.....goAAAA

Fig. 11.17 An HTTP GET request and its embedding in a S-HTTP Secure request.
(b) The original GET request. (b) The GET request encapsulated in a Secure request. After the
Secure-specific header fields, the authenticated and encrypted GET request in CMS syntax appears
in base64 encoding (in italic typewriter font). Only a portion of the encoding is included in
the figure.

As in standard HTTP, the server’s reply includes corresponding fields which, if the
client offers several possibilities, may select one of them.

In addition, further header fields are defined for use with the standard HTTP
methods, in order to specify information relevant to the security functions, such as
which security scheme is being used (with S-HTTP, this will of course currently
be S-HTTP/1.4), which encryption and MAC algorithms are to be used, signatures,
MAC values and information about keys. It is assumed that this type of information
is confidential and it is therefore to be supplied within the encapsulated body of the
SHTTP message. A typical HTTP request from a client intended for a secure server
could for example be as shown in Figure 11.17 (a). For transmission this would be
encapsulated within a S-HTTP request as shown in Figure 11.17 (b). Note that the
Secure request also hides the URI for the resource to be accessed, supplying only a
*, while the real URI is encapsulated in the embedded GET request.

11.5 Web Services

The Web Services paradigm for construction of distributed systems offers applica-
tions the possibility of using remote services via standard Internet application layer
protocols such as HTTP. A typical approach is to use a Web server to pass input
information to an object on the server, and to pass output information back from
the object to the service user, which acts as a client of the Web service. The most
direct way to do this is to transmit arguments in an HTTP GET or POST request
(see page 343) from a Web client to the Web server, which passes them on to the

11.5 Web Services 357

Client
Web

Server
Web Object

HTTP POST response

HTTP POST request

results in

arguments in

Fig. 11.18 Object access in simple Web services

POST /Weather HTTP/1.1

Host: www.weathermax.com

Content-type: application/soap+xml; charset="utf-8"

Content-length: 482

<?xml version="1.0"?>

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">

<env:Header>

...

</env:Header>

<env:Body>

...

</env:Body>

</env:Envelope>

Fig. 11.19 An HTTP request to invoke the getTemp method from Figure 10.12.
The HTTP request header is in typewriter font and the request body is in italic typewriter

font. This body has the form of an XML encoded SOAP message.

object whose method is to be invoked; the results are passed back the opposite way
in a GET or POST response. This is illustrated in Figure 11.18.

A simple protocol for this purpose is SOAP, which we have described in Sec-
tion 10.6.5. The most recent version of SOAP is version 1.2, defined in [274, 275].
To indicate that the body of the HTTP request or reponse is to be handled as a
SOAP request or reponse, the media type, given by the Content-type or Accept
header fields in the HTTP request or response, should be application/soap+xml
and the charset attribute should be the default XML character set, utf-8. The re-
source which should handle the SOAP message will be specified by the URI given
in the HTTP request.

An example of a SOAP request embedded in an HTTP POST request is shown in
Figure 11.19; details of the headr and body of the SOAP request have been omitted.
This request will be dealt with by the resource http://www.weathermax.com/
Weather. The SOAP specification [273] recommends that when SOAP is used over
HTTP, then the HTTP GET method is used (for efficiency reasons) for so-called
idempotent operations, i.e. operations which do not change the state of the resource
being accessed, while the PUT method should be used for operations which poten-
tially change the state of this resource.

358 11 Application Protocols

document ::= description

description ::= [documentation] { insert }* [types] { ibs }*
insert ::= include | import

types ::= { schema }*
ibs ::= interface | binding | service

interface ::= { opfault }*
opfault ::= {operation}* { fault}*
binding ::= { opfault }*
service ::= {endpoint }+
operation ::= { input }* {output}* {infault}* {outfault}*

Fig. 11.20 Syntax of WSDL documents. Each of the syntactic elements is an XML element.
The syntax is given in EBNF, where [x] indicates an optional syntactic element x, {x}* indicates
a repetition of 0 or more elements and {x}+ a repetition of 1 or more elements.

11.5.1 Web Service Description Language

To make use of a web service in a practical application a description of the service
must be produced in a standard format and made available to potential users of
the service. This description is encoded as an XML document, which is structured
according to the rules of the Web Service Description Language (WSDL) [277], and
includes:

• A definition of the service interface;
• A definition of the service implementation;
• If it is a concrete implementation rather than an abstract service description

which is being described, a description of the service endpoint (typically the
URL used for contacting the service).

The syntax of WSDL documents is given in Extended BNF in Figure 11.20. A
document consists of a description XML element, which is made up of a number
of smaller elements:

1. An optional documentation element, used to provide user-readable documen-
tation.

2. Zero or more insert elements, each of which can be either an include element
or an import element. These are used to include external definitions in the cur-
rent WSDL document. An include element refers to a definition of a component
in the same namespace as the current description, while an import element
refers to a definition of a Web Service component in another namespace. The
effect of inclusion is cumulative, so if a document A includes B which includes
C, then the components defined by A include all the components defined in A, B
and C.

3. An optional types element, used to define the datatypes of the messages used
by the service, expressed in terms of a scheme in some XML schema language.

4. Zero or more ibs elements, each of which can be:

11.5 Web Services 359

Fig. 11.21 Basic message
exchange patterns in WSDL
operations

input

Client Service

Client Service

(c) in−out
input

fault
Client Serviceoutput

fault

(a) in−only

(b) robust−in−only
input

fault

a. An interface element, which describes an abstract interface to the Web Ser-
vice as a set of abstract operations involving transfer of messages, together
with a set of fault messages to be used in case of errors.

b. A binding element, which describes the concrete message format and proto-
col to be used to exchange the messages required by an interface.

c. A service element, which specifies where the service can be accessed.

Each interface element contains one or more operation elements, which de-
scribe the pattern of communication used by the operation and the messages to be
passed over the interface in the inward and outward directions during normal op-
eration, and the fault messages to be used in case of errors. Three basic message
exchange patterns (MEPs) are defined:

in-only: A single message is passed across the interface in the inward direction
(towards the server). No fault messages are propagated. This is typically used to
send parameters for methods which are to be invoked with maybe semantics.

robust-in-only: A single message is passed across the interface in the inward
direction. Fault messages are propagated in the opposite direction.

in-out: A single message is passed across the interface in the inward direction,
after which a single message is passed across the interface in the outward direc-
tion. Fault messages caused by the inward-going message also propagate in the
inward direction, while those caused by the outward-going message also propa-
gate in the outward direction.

These basic patterns are illustrated in Figure 11.21. Further MEPs can be defined if
required. A WSDL specification for a typical RPC-like SOAP-based service, which
(amongst other things) offers the getTemp method described in Figures 10.12 and
10.13, is shown in Figure 11.22. You could imagine, for example, that this is part
of a service offered by a company who make weather information available to their
customers, where getTemp is used to get temperature data for a given city at a given
date and time. As can be seen in this example, the elements typically have a name
attribute, which identifies them and may be used as a reference by other elements.
The namespaces used to ensure uniqueness of names are specified as attributes of
the description element. Most of these are typically standard XML namespaces,

360 11 Application Protocols

<?xml version="1.0" encoding="utf-8"?>

<description

xmlns="http://www.w3.org/ns/wsdl"

targetNameSpace="http://www.weathermax.com/2004/wsdl/wthSvc"

xmlns:tns="http://www.weathermax.com/2004/wsdl/wthSvc"

xmlns:wmns="http://www.weathermax.com/2004/wsdl/schemas/wthSvc"

xmlns:wsoap="http://www.w3.org/ns/wsdl/soap"

xmlns:soap="http://www.w3.org/2003/05/soap-envelope"

xmlns:wsdlx="http://www.w3.org/ns/wsdl-extensions">

<documentation> This document describes the ... service </documentation>

<types>

<xs:schema ... >

<xs:element name="getTempRequest" type="tgetTempRequest"/>

<xs:complexType name="tgetTempRequest">

<xs:sequence>

<xs:element name="city" type="xs:string"/>

<xs:element name="time" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

<xs:element name="getTempResponse" type="xs:float"/>

<xs:element name="invalidReqError" type="xs:string"/>

</xs:schema>

</types>

<interface name="weatherInterface">

<fault name="invalidReqFault" element="wmns:invalidReqError"/>

<operation name ="getTemp" pattern="http://www.w3.org/ns/wsdl/in-out"

style="http://www.w3.org/ns/wsdl/style/iri" wsdlx:safe="true">

<input messageLabel="In" element="wmns:getTempRequest"/>

<output messageLabel="Out" element="wmns:getTempResponse"/>

<outfault ref="tns:invalidReqFault" messageLabel="Out"/>

</operation>

...

</interface>

<binding name="weatherBinding" interface="tns:weatherInterface"

type="http://www.w3.org/ns/wsdl/soap"

wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/">

<operation ref="tns:getTemp"

wsoap:mep="http://www.w3.org/2003/05/soap/mep/soap-response"/>

<fault ref="tns:invalidReqFault" wsoap:code="soap:Sender"/>

...

</binding>

<service name="weatherService" interface="tns:weatherInterface">

<endpoint name ="weatherEndpoint" binding="tns:weatherBinding"

address="http://www.weathermax.com/WeatherService"/>

</service>

</description>

Fig. 11.22 A WSDL 2.0 specification for a service offering the getTemp method from
Figure 10.12

11.5 Web Services 361

but the targetNameSpace and tns namespaces are used specifically in WSDL de-
finitions in order to ensure that locally defined names are unambiguous with respect
to definitions imported (via import elements or by other means) from other files.
These two namespaces are conventionally chosen to refer to the same URI, which is
unique for the service being defined. Thus in Figure 11.22 they are both associated
with the URI:

http://www.weathermax.com/2004/wsdl/wthSvc

and the name tns:getTempRequest, for example, refers to the locally defined
name getTempRequest associated with one of the messages. Similarly, a further
namespace (in this example wmns) is introduced in order to refer to schemas defined
in the description.

The binding element, which specifies how the service’s operations are in-
voked, essentially describes an interface implemented using a particular proto-
col. WSDL is independent of the underlying protocol, and bindings are available for
SOAP, CORBA, DCOM, .NET and other standard object access protocols. In this
particular example the binding is for SOAP, used for RPC-like access to the service
with HTTP as the underlying “transport protocol”, as indicated by the type and
wsoap:protocol attributes of the binding element. However, just as SOAP is not
the only possible object access protocol for use in connection with Web Services, so
HTTP is not the only possible underlying protocol; alternatives include the Internet
protocols FTP and SMTP, together with a number of proprietary protocols.

11.5.2 Publication and Discovery of Web services

As in the cases of RMI and CORBA, the service description must be propagated
to a service registry as part of the process of publication of the service. A protocol
known as the Universal Description, Discovery and Integration (UDDI) protocol is
used by service providers for registering the description and by service requestors
(i.e. Clients) for discovering the service. The basic model for the registry is business-
oriented, so in general the registry contains information not only about services, but
also about the businesses which offer services and the relationships between such
businesses.

UDDI [262] makes use of SOAP over HTTP (or HTTPS) to contact the registry,
using XML elements in the body of the SOAP messages to carry the required infor-
mation. These elements can be thought of as representing different types of PDU for
UDDI. They fall into six groups, which in the context of UDDI are usually known
as API sets, since they correspond to sets of functions which the user might wish to
exploit in an application:

Inquiry API set: Defines XML elements for finding information about services,
businesses, relationships between businesses and bindings between services.

Publication API set: Defines XML elements for inserting, updating or deleting
information about services, businesses or bindings.

362 11 Application Protocols

(a) <uddi:find_service xmlns="urn:uddi-org:api_v3">

<findQualifiers>

<findQualifier>approximateMatch</findQualifier>

</findQualifiers>

<name>Weather%</name>

</uddi:find_service>

(b) <uddi:serviceList xmlns="urn:uddi-org:api_v3">

<serviceInfos>

<serviceInfo serviceKey="8abc0123-0136-c12f-d098-801eed654321"

businessKey="8765faee-0188-c12f-d09a-801eed654321">

<name>WeatherService</name>

</serviceInfo>

<serviceInfo serviceKey="b3e1be80-affe-119f-80a8-0050fc331c1b"

businessKey="a90d047e-affe-119f-83d4-0050fc331c1b">

<name>Weather4you</name>

</serviceInfo>

</serviceInfos>

</uddi:serviceList>

Fig. 11.23 A UDDI find service inquiry and the corresponding response from the registry

Security Policy API set: Defines XML elements for fetching or discarding secu-
rity tokens used for entity authentication.

Custody and Ownership Transfer API set: Defines XML elements for trans-
ferring ownership or other rights for information in the UDDI registry.

Subscription API set: Defines XML elements which enable clients to register
(or cancel) their interest in receiving information about changes to given items in
the UDDI registry.

Value Set API set: Defines XML elements which enable clients to validate UDDI
references by checking that the objects referred to have values within a given
value set.

A very simple example is shown in Figure 11.23, which shows a service inquiry and
the corresponding response. Both enquiry and response are enclosed in the body of
a SOAP message for transport.

In this example, the client requests information about services whose names start
with the string Weather (% is a wildcard character indicating “any sequence of
characters”). Searching is here by name, using approximate matching, but a large
number of other criteria can be used, such as search by category, by identifier or by
matching to a specification given in WSDL. The response is a list of serviceInfo
elements, each containing the name of a service matching the given search criterion.
In addition, each serviceInfo element specifies a serviceKey and businessKey
as attributes which respectively identify the service and the business which offers it.
Each of these keys is a Universal Unique Identifier (UUID), as defined in ISO Stan-
dard 11578 [208]. UUIDs are intended to be globally unique, and are constructed
by concatenating the current time, the local MAC and IP addresses and a random
number to get a 128-bit unique identifier. In UDDI, UUIDs are associated with

11.5 Web Services 363

WSFL, XLANG, BPEL, ...Service Flow

Service Publication
and Discovery

WSDL

SOAP

HTTP, FTP, SMTP, ...

Language/ProtocolFunctionality

Interoperable
base stack

Service description

XML based messaging

Networking

UDDI, WSEL

Fig. 11.24 Web Services Architecture conceptual stack

businesses, services, bindings and so-called tModels which describe the technical
properties of a service, typically in terms of a WSDL specification.

Once the name and business and service keys for a service have been found,
further details of the business and service can be found in the registry by using fur-
ther UDDI inquiries. For example, an inquiry including a get serviceDetail el-
ement would retrieve details about the service, get businessDetail details about
the business, and so on. Publication is somewhat more complicated because of the
need to supply authentication information to the registry, so that for example only
the business which is responsible for a given service can insert or delete informa-
tion about that service. Authentication makes use of the XML Signature and XML
Encryption facilities described in Section 8.4.5. Full details of the XML elements
which have been defined for use in UDDI requests and responses can be found
in [262].

11.5.3 Web Service Architectures

It should be clear by now that the Web service architecture is considerably more
complex than the simple description at the start of Section 11.5 might get you to
imagine. In fact it consists of several layers which are added on to the chosen data
transfer protocol, which in full generality does not even need to be HTTP. The com-
plete architecture of the Web Services protocol stack is illustrated conceptually in
Figure 11.24. The function of the uppermost layer, associated with Service Flow,
is to make it possible to compose simpler web services into more complex ones. A
major aim of this is to be able to provide services for performing complete business
processes, in which documents from various sources are passed round and processed
in some way. One of the main candidates for use in this layer, Business Process Ex-
ecution Language (BPEL), of which the latest version is known as WS-BPEL [265],
focusses directly on this issue. However, the way in which this layer works is

364 11 Application Protocols

currently not completely standardised among various suppliers of Web services, and
we shall not go into more details about it here.

Further Reading

There is a huge amount of literature on the topics of this chapter, and it will only be
possible to give you a few rough indications of where to start looking.

The area of distributed information systems, of which the World Wide Web is
just one example, has become enormously important in recent years. There is con-
ceptually no limit to the types of information available in such systems: bibliogra-
phies, reference works, catalogues, books and reports, software, still or moving pic-
tures, sounds,. . . . Special protocols have been developed for some of these areas, for
example for searching library catalogues [202, 203] and for multi-media transfers.
These latter are especially interesting to study because transfer of sound or moving
pictures places strict real-time requirements on the protocol, and because the identi-
fication of contexts in a sequence of sounds or pictures is a special challenge. Search
engines for finding relevant items in huge information bases are still a problem area,
and continue to be a topic for research.

Systems based on the use of cooperating agents are currently a subject of inten-
sive research, and many practical areas of application have been considered. The
simple example which we have seen in this chapter is an example of a system of
static agents. Many interesting systems instead use mobile agents, which can move
between systems. Mobile agents have been proposed for use in many areas, such as
collecting up information from the Internet, controlling communication networks,
and in artificial intelligence applications such as robotics. The way in which a group
of agents exchange information in order to achieve their common goal is often de-
scribed by a so-called coordination language, and a study of this area is a very useful
introduction to some aspects of agent systems. A good review of coordination lan-
guages and the protocols used to implement them can be found in the monograph
edited by Omicini et al. [103], while Baumann [6] gives a good overview of the
technologies behind mobile agents. The proceedings of the two series of interna-
tional workshops on “Intelligent Agents for Telecommunication Applications”, and
on “Cooperative Information Agents” are good places to search for the results of re-
cent research into both theory and applications of agents in the telecommunications
and information retrieval areas.

A new trend in the construction of very large distributed systems is to base them
on Grid technology. This is a technology for coordinating the activities of a poten-
tially huge number of computers, in order to supply users with computer power, in
the form of CPU power, storage and other resources. The analogy is to the electric
grid, which provides users with electric power without their having to think about
exactly where it comes from. Foster and Kesselman’s book simply entitled “The
Grid” [47] describes many of the ideas and the protocols involved.

Further Reading 365

The standardised protocols dealt with in this chapter have been rather basic ones,
which illustrated particular patterns of communication. Among ISO/ITU-T Appli-
cation layer protocols, notable omissions have been protocols to support:

1. Virtual terminals, which follow the same general principles as FTAM, express-
ing all operations in terms of an abstract data structure [165, 166].

2. Directories, which permit lookup of addresses from names, following the X.500
principles discussed in Chapter 7. These are described in the multi-part ISO 9594
standard [173]– [180].

3. System Management, which in OSI is an Application layer function, based
on a general Management Information Service (CMIS [181]) and Proto-
col(CMIP [182]). More detailed individual aspects of management are described
in the multi-part ISO 10164 standard [204]– [205].

There are also a large number of specialised areas for which standardised protocols
have been developed, such as office automation, graphics, industrial automation,
electronic data interchange for trade purposes (EDI), banking and so on. The area
of e-commerce and e-government has spawned a whole series of protocols, which
are good examples of how to achieve a high degree of security to maintain user
confidence.

Web Services are a hot topic seen from a commercial perspective, since there
is a widespread belief that they are the key to offering Internet-based services to
the general public. As you might suppose, from the very nature of things much
of the literature on Web Services is available via the Web. Organisations such as
SoapWare, which acts as a forum for SOAP developers, have produced a number
of specialised tutorials on the use of version 1.1 of SOAP, which can be found on
SoapWare’s website at www.soapware.org. Further developments, including the
specification of SOAP 1.2 and WSDL 2.0, have taken place under the auspices of
the organisation W3C, whose main web site is at www.w3c.org. A tutorial on SOAP
1.2 forms “Part 0” of the SOAP specification [273], and a tutorial on WSDL forms
“Part 0” of the WSDL specification [276].

Different commercial actors in the area of Web Services unfortunately continue
to have rather different views on the overall architecture of Web Service systems.
However, in recent years there has been a significant effort towards agreeing on a
common standard for the application-oriented Service Flow layer of the architecture.
The first move in this direction was an agreement between several important players
(BEA, IBM, Microsoft, SAP and Siebel Systems) to define a common standard,
BPEL4WS [7], to replace IBM’s BPEL and Microsoft’s XLANG. Subsequent work
within the OASIS organisation, has refined BPEL4WS, and led to the development
of WS-BPEL [265]. A good deal of information on this activity can be found via
OASIS’ website at www.open-oasis.org. Hull and Su [66] give a good general
review of the challenges to be dealt with in this layer.

Appendix A
Notation

A.1 Data Types and Variables

The notation used to denote data types closely follows that of the specification lan-
guage VDM [72]:

Type Denoted set of values
B The Boolean values: {true, false}.
N0 The non-negative integers: {0,1,2, . . .}.
N1 The positive integers: {1,2, . . .}.
Zn The integers modulo n: {0,1, . . . ,(n−1)}.
bit Bits: the integers {0,1}.
char The characters of some convenient character set.
tok A countable set of tokens, i.e. distinguishable values whose structure

does not concern us.
T -set The finite subsets of the type T .
∗∗T The finite sequences of zero or more values of type T .
S×T × . . . The tuples whose first elements are of type S, second elements of type

T , etc.
S|T Objects which are either of type S or of type T .
S→ T The functions from S to T .

A variable x of type T is denoted by x : T , while a tuple with elements x,y, . . . of
types S,T, . . . is denoted by (x : S,y : T, . . .).

A.2 Data Values and Expressions

In addition to the standard notations of set theory and arithmetic, the following
notations are used:

{} The empty set.

367

368 Appendix A

cards The cardinality of set s: the number of elements in s.
[] The empty sequence.
hdq The first (head) element of sequence q.
tlq The tail of sequence q: the elements remaining after removal of hdq.
lenq The length of sequence q: the number of elements in q.
[x,y, . . .] The sequence whose first element is x, second element is y, etc.
q(i) The i’th element of sequence q, where 1≤ i≤ lenq (and q(1) = hdq).
q † [i �→ x, j �→ y, . . .] The sequence q in which the i’th element has been replaced

by x, the j’th element by y, etc.
q̂r The concatenation of the sequences q and r: the sequence consisting

of the elements of q followed by the elements of r.
(x,y, . . .) The tuple whose first element is x, second element is y, etc.
x⊕ y (x+ y) mod 2; for Boolean values x,y: the exclusive or of x with y.
x� y (x− y) mod 2. (For x,y ∈ bit, the same as x⊕ y.)
succ(i) The successor of i in a finite subset of the integers, ZN : (i+1) mod N.

A.3 Processes and Process Expressions

αP The alphabet of process P.
αcP The channel alphabet of process P.
STOPA Deadlock: a process which refuses to take part in any events in the

event set A, or in communications over the channel set A.
(a→ P) Prefixing: a process which initially takes part in the event a and then

behaves like process P.
a can be an event from a finite alphabet of elementary events, or can
be an input or output event over a channel, where:

c!e denotes output of value e on channel c.
c?x : T denotes input of a value for variable x of type T on

channel c.∐
i∈D c[i]!x denotes multiple offers of output via the channels c[i]

for all i ∈ D.
c[i ∈ D]?a : T denotes input of a value for the variable a of type T

on any of the channels c[i] for i ∈ D.

P�Q Internal non-deterministic choice between processes P and Q.
P[]Q External non-deterministic choice between processes P and Q.
P ‖A Q Parallel composition of processes P and Q with synchronisation over

events in the set A.
P ‖ Q Parallel composition of processes P and Q with synchronisation over

all events in their common alphabet.
P ||| Q Parallel composition of processes P and Q without synchronisation

(pure interleaving).

A.6 Security 369

P[d/c] Renaming, with all occurrences of event c in process P replaced by
event d, or all occurrences of channel c replaced by channel d.

P\A Hiding of all events in the event set or channel set A in process P.
(if b then P else Q) Conditional behaviour: the process which behaves like P if

the Boolean expression b is true, and otherwise behaves like Q.

A.4 Traces, Failures and Transitions

〈〉 The empty trace.
〈s1,s2, . . .〉 The trace with events s1,s2,
s t̂ Trace concatenation: the trace whose first elements are those of s and

whose remaining elements are those of t.
#s Trace length: The number of events in the trace s.
(s≤ t) Trace prefix: true if the first events of trace t are the events of trace s.
s � L Trace restriction: The trace s restricted to the events in the event set L

or the communication events over the channel set L.
past(c) The channel history for channel c.
initials(P) The set of initial events of P.
traces(P) The set of traces of P.
re f usals(P) The set of all refusal sets of P.
f ailures(P) The set of all failures of P.
P a−→ Q Process P can take part in event a and will then behave like process Q.
P s=⇒ Q Process P can take part in the trace s and will then behave like process

Q.

A.5 Inference Rules for Process Specifications

P sat R Process P satisfies the specification R. (Predicate R is an invariant of
P).

Γ � ∆ An inference: all predicates in ∆ can validly be inferred from those in
Γ .

Γ 1�∆1
Γ 2�∆2 An inference rule: if Γ 1 � ∆1 is valid, then so is Γ 2 � ∆2.

A.6 Security

PKA The public key for user A in a PKCS.
SKA The secret (private) key for user A in a PKCS.
SKAB The secret key for communication between users A and B in a SKCS.
P |≡ X P believes X to be true.

370 Appendix A

P |∼ X P once said X (and therefore believed X at the time).
P �−→ X P has jurisdiction over X (and therefore should be trusted on matters

concerning X .)
P K←→ Q P and Q may properly communicate using the good key K.
{X}K X is encrypted using the key K.
P�X P sees X .
�X X is fresh.
P→ Q : X P has sent X to Q.

Appendix B
Standardisation of Protocols

B.1 Standards Organisations

Many organisations define standard protocols for use in data communication or
other telecommunication systems. Among the most important official organisations
are:

ISO The International Organisation for Standardization, which produces interna-
tional standards in many technical areas, including data communication.

ITU-T The International Telecommunication Union, Telecommunication Stan-
dardization Sector (formerly known as CCITT), a UN organisation which produces
standards (so-called Recommendations) for telecommunication. Telecommuni-
cation is here to be understood in a broad sense, and thus covers some forms of
data communication, namely those forms which go via public telephone or data
networks.

IEC The International Electrotechnical Commission, which produces standards
for (amongst other things) electrical equipment, including process equipment and
communication equipment.

IEEE The Institute of Electrical and Electronics Engineers, an organisation in the
USA which produces standards in many areas of electrical engineering, includ-
ing computers and data communication, and which has been especially active in
standardisation of local area networks (LANs).

ECMA The European Computer Manufacturers Association, a European organi-
sation for the computer industry, which has published standards covering many
areas of data communication.

ISO, ITU-T and IEC are true international organisations, in the sense that their mem-
bers represent individual nations. For ISO, the members are the various national
standardisation bodies; for ITU-T, the members are the national tele-administrations.

At one time, all these organisations, as well as various national bodies, produced
competing standards. This was obviously unsatisfactory, and in recent years exten-
sive collaboration has been the order of the day. ISO and IEC have a joint committee
(known as JTC1 – Joint Technical Committee 1) for standardisation in the general

371

372 Appendix B

area of information processing. ITU-T and ISO have an agreement to coordinate
their efforts to standardise OSI-related standards, so that standards on the same sub-
ject from these two organisations have the same technical content (and preferably
also exactly the same text). Several examples of this can be seen in the list of ref-
erences following this appendix, where ITU-T recommendations corresponding to
given ISO standards are listed. IEEE and ISO have a similar arrangement for stan-
dards related to local area networks, so that IEEE standards from the ‘802-series’
(all of which are related to LANs) are published by ISO as parts of ISO Standard
8802.

A completely different style of standardisation can be found in the so-called In-
ternet standards. Although many of these have been standardised by the U.S. De-
partment of Defense (DoD), which issues standards for military systems of all kinds,
they in fact originate within the Internet community – the people and institutions
who use the ARPA Internet system. This is not in itself an organisation, but more
a distributed forum for discussion. However, there is a central committee, the Inter-
net Architecture Board (IAB), which publishes the results of the discussion so that
others may make use of them.

B.2 Standards Documents

When you start to look into standards, you may wonder about the system used
to identify them. For the uninitiated, it can also be confusing that the same ‘stan-
dard’ appears in different versions, with slightly different identifications, as it passes
through the process of reaching final approval in the organisation concerned.

B.2.1 ISO standards

ISO standards documents are identified by a set of letters, which give the type and
current status of the document, together with a number which identifies the topic,
and possibly a date identifying the version. For example: ISO8072 (1984) denotes
the 1984 version of ISO standard 8072.

The letters can, for basic standards, be:

ISO: The final, accepted version of an international standard.
DIS: Draft International Standard. The (supposedly) final draft before formal ac-

ceptance by ISO. The contents of such a document have reached a technically
stable state, and are not expected to be altered substantially as a result of further
discussions. At this stage the document is in most countries published for public
criticism, so that interested parties can be aware of what is on the way.

CD: Committee Draft. The contents of such a document are of a more prelimi-
nary nature, and may be subject to substantial change before the final version is
accepted. Committee drafts are not usually available to the general public.

B.2 Standards Documents 373

Modifications to existing ISO standards are published in the form of addenda or
amendments. The final version of an addendum bears the letters AD, and an amend-
ment AM. Final drafts (corresponding to DIS) are denoted by DAM and preliminary
drafts (corresponding to CD) by PDAM. ISO also publishes technical commentaries
and other documents of a similar nature, which do not have the same status as stan-
dards. These are known as technical reports, identified by the letters TR, with final
drafts denoted DTR and preliminary drafts PDTR.

Standards are numbered in the order in which they originate (as CDs, PDAMs or
PDTRs); the various drafts and the final version all have the same number. However,
since ISO standardises an awful lot of things, you cannot in general deduce much
about the topic by looking at the number. The final versions of ISO standards are
published as they appear. They can be purchased from the standardisation organisa-
tion which represents ISO in the country where you live.

B.2.2 ITU-T recommendations

ITU-T recommendations are identified by a letter, which gives the approximate area
to which the recommendation relates, together with a number, which more precisely
identifies the topic, and a date identifying the version. For example: X.214 (1988)
denotes the 1988 version of ITU-T Recommendation X.214.

The letters for the areas most relevant to data communication are:

G Digital networks.
I Integrated Services Digital Network (ISDN).
T Telematic services.
V Data communication over the telephone network.
X Data communication networks.
Z Formal description techniques.

Within most areas, the recommendations are numbered in the order in which they
have been introduced. But in the X-series, from X.200 upwards, a more informative
numbering scheme is followed:

200–229 OSI service and protocol standards.
290–299 OSI conformance testing.
400–420 Message handling systems.
500–521 Directories.
700–745 Management

Among the OSI service and protocol standards, number 21x identifies the standard
for the service in OSI layer x, and 22x the standard for the corresponding protocol.

Drafts of ITU-T recommendations are not published outside the technical groups
which consider them. About every four years, the latest approved versions are pub-
lished in a compendium, which in the hard copy version currently consists of more
than 60 volumes. Many of them are now available without charge from ITU-T’s web
site at:

374 Appendix B

http://www.itu.int/

The others can be purchased via the website or by contacting ITU-T.

B.2.3 Internet standards

Internet standards are so-called RFCs – Requests for Comments – which are avail-
able via the Internet itself. Each RFC has a number which identifies the topic. For
example: RFC793, which describes TCP.

Numbers are allocated in the order in which the RFCs appear, and so do not say
anything significant about what sort of topic the RFC deals with, or about the status
of the document. The procedure for approval is somewhat similar to ISO’s: an initial
proposal is discussed as a Proposed Standard. After a minimum of six months it may
be accepted as a Draft Standard. Finally, after at least a further four months, it may
be accepted as a Standard Protocol for Internet use. An Internet standard protocol is
given an extra number which identifies it in the series of full standards (STD). For
example, RFC793 is Internet Standard STD7. If a modified version of the protocol
is subsequently developed, it gets a new RFC number. The current status of all RFCs
is published at regular intervals in a general catalogue, which – of course – is itself
an RFC, denoted STD1, and entitled “Internet Official Protocol Standards”.

As in the case of ISO, the Internet publication process also operates with other
categories of document, apart from what one might consider actual standards. For
example, an RFC may be categorised as Informational, if it gives generally useful
information (about which consensus has not necessarily been achieved), Experi-
mental, if it describes interesting but relatively untested new ideas, or Historical, if
it describes a now outdated technique. Finally, some RFCs may be categorised as
describing Best Current Practice in some area; these are also given an extra num-
ber, which in this case identifies the document in the series of best current practices
(BCP). For example, RFC2026 is BCP9.

The form of publication is, as you might suppose, quite different from that used
by the more official international organs such as ISO and ITU-T. Generally speak-
ing, the RFCs and all comments on them are published via the Internet itself. The
IAB (strictly, the Internet Engineering Steering Group, IESG) coordinates the results
of the discussion and looks after the formalities of promoting RFCs from proposed
standard to draft standard to full standard. Full details of the current procedure can
be found in reference [223].

RFCs can be easily obtained via the Internet. The RFC Editor maintains a Web-
site:

http://www.rfc-editor.org/rfcsearch.html

which gives access to RFCs by various criteria, such as the number of the RFC,
the status of the RFC (proposed standard, draft standard, etc.), or by keyword-based
search.

B.2 Standards Documents 375

Although the original standards for HTTP were developed as Internet RFCs,
more recent development of Web-based technologies, such as HTML, XML, SOAP,
and WSDL, takes place under the auspices of a separate organisation, the World
Wide Web Consortium (W3C). Standards agreed by the W3C can be found on their
web site:

http://www.w3.org/

Finally, the OASIS consortium coordinates further work on web services, including
UDDI and BPEL. The results of their work can be found via their web site at:

http://www.oasis-open.org/

References

1. Adiseshu, H., Parulkar, G., Varghese, G.: A reliable and scalable striping protocol. In: Proc.
ACM SIGCOMM’96, pp. 131–141. ACM (1996)

2. Ahamad, M., Neiger, G., Burns, J.E., Kohli, P., Hutto, P.W.: Causal memory: Definitions,
implementation and programming. Distrib. Comput. 9, 37–49 (1995)

3. Aspnes, J., Fekete, A., Lynch, N., Merritt, M., Weihl, W.: A theory of timestamp-based con-
currency control for nested transactions. In: Proc. 14th. Int. Conf. on Very Large Data Bases,
pp. 431–434 (1988)

4. Baran, P.: On distributed communication networks. IEEE Trans. on Communications CS-12,
1–9 (1964)

5. Bartlett, K.A., Scantelbury, R.A., Wilkinson, P.T.: A note on reliable full-duplex transmission
over half-duplex links. Commun. ACM 12(5), 260–261 (1969)

6. Baumann, J.: Mobile Agents: Control Algorithms, Lecture Notes in Computer Science, vol.
1658. Springer-Verlag (2000)

7. BEA, IBM, Microsoft, SAP AG, Siebel Systems: Business Process Execution Language for
Web Services Version 1.1 (2003)

8. Bellovin, S.: Internet RFC 1948: Defending Against Sequence Number Attacks (1996)
9. Bernstein, P.A., Goodman, N.: Concurrency control in distributed database systems. ACM

Comput. Surv. 13(2), 185–221 (1981)
10. Bernstein, P.A., Shipman, D.W., Rothnie, J.B.: Concurrency control in a system for distrib-

uted databases (SDD-1). ACM Trans. Database Syst. 5(1), 18–51 (1980)
11. Bertsekas, D., Gallager, R.: Data Networks. Prentice-Hall International (1987)
12. Bertsekas, D.P., Özveren, C., Stamoulis, G.D., Tseng, P., Tsitsiklis, J.N.: Optimal communi-

cation algorithm for hypercubes. J. Parallel and Distrib. Comput. 11, 263–275 (1991)
13. Birman, K.P., Joseph, T.A.: Reliable communication in the presence of failures. ACM Trans.

Comput. Syst. 5(1), 47–76 (1987)
14. Birrell, A.D., Nelson, B.J.: Implementing remote procedure calls. ACM Trans. Comput.

Syst. 2(1), 29–59 (1984)
15. Bishop, M.: Computer Security: Art and Science. Addison-Wesley (2002). ISBN 0-20-

144099-7
16. von Bochmann, G.: Finite state descriptions of communication protocols. Comp. Networks

2, 361–372 (1978)
17. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language LOTOS. Comp.

Networks and ISDN Syst. 14, 25–59 (1987)
18. Brassard, G.: Modern Cryptology, Lecture Notes in Computer Science, vol. 325. Springer-

Verlag (1988)
19. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential

processes. J. ACM 31(3), 560–599 (1984)

377

378 References

20. Burns, J.: A formal model for message passing systems. Tech. Report TR–91, Comp. Science
Dept., Indiana University (1980)

21. Burrows, M., Abadi, M., Needham, R.M.: Authentication: A practical study in belief and
action. In: Proc. 2nd. Conf. on Theoretical Aspects of Reasoning about Knowledge, pp.
325–342 (1988)

22. Chandy, K., Lamport, L.: Distributed snapshots: Determining global states of distributed
systems. ACM Trans. Comput. Syst. 3(2), 63–75 (1985)

23. Chandy, K.M., Misra, J., Haas, L.M.: Distributed deadlock detection. ACM Trans. Comput.
Syst. 1(2), 144–156 (1983)

24. Chang, E.G., Roberts, R.: An improved algorithm for decentralized extrema-finding in cir-
cular configurations of processors. Commun. ACM 22(5), 281–283 (1979)

25. Chiu, D.M., Jain, R.: Analysis of increase and decrease algorithms for congestion avoidance
in computer networks. Comp. Networks and ISDN Syst. 17(1), 1–14 (1989)

26. Cristian, F.: Probabilistic clock synchronization. Distrib. Comput. 3, 146–158 (1989)
27. Daemen, J., Rijmen, V.: AES Proposal: Rijndael (1999). Available via URL

http://csrc.nist.gov/encryption/aes/rijndael/. Selected as the NIST Advanced
Encryption Standard algorithm.

28. Dally, W.J., Seitz, C.L.: Deadlock-free message routing in multiprocessor interconnection
networks. IEEE Trans. Comput. C-36(5), 547–553 (1987)

29. Davies, D.W.: The control of congestion in packet switching networks. IEEE Trans. on
Communications COM-20(3), 546–550 (1972)

30. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. on Inf. Theory
IT-22(6), 644–654 (1976)

31. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated key ex-
changes. Designs, Codes and Cryptography 2, 107–125 (1992)

32. Dijsktra, E.W.: A note on two problems in connexion with graphs. Num. Matematik 1, 269–
271 (1959)

33. Dijsktra, E.W., Scholten, C.S.: Termination detection for diffusing computations. Inf. Proc.
Letters 11(1), 1–4 (1980)

34. Dolev, D., Klawe, M., Rodeh, M.: An O(n lnn) unidirectional distributed algorithm for ex-
trema finding in a circle. J. Algorithms 3, 245–260 (1982)

35. Dolev, D., Strong, H.R.: Polynomial algorithms for multiple processor agreement. In: Proc.
14th ACM Symp. on Theory of Comput., pp. 401–407 (1982)

36. Dolev, D., Strong, H.R.: Authenticated algorithms for Byzantine agreement. SIAM J. Com-
put. 12(4), 656–666 (1983)

37. Duato, J.: A new theory of deadlock-free adaptive routing in wormhole networks. IEEE
Trans. on Parallel and Distrib. Syst. 4(12), 1320–1331 (1993)

38. Dwork, C., Skeen, D.: The inherent cost of nonblocking commitment. In: Proc. 2nd ACM
SIGACT/SIGOPS Symp. on Principles of Distrib. Comput., Montreal, Canada, pp. 1–11
(1983)

39. Eswaran, K.P., Gray, J.N., Lorie, R.A., Traiger, L.L.: The notions of consistency and predi-
cate locks in a database system. Commun. ACM 19(11), 624–633 (1976)

40. European Computer Manufacturers’ Association: Tech. Report ECMA TR/20. Layer 4 to 1
Addressing (1984)

41. Fekete, A., Lynch, N., Merritt, M., Weihl, W.: Nested transactions and read/write locking.
In: Proc. 6th. Symp. on Principles of Database Syst., pp. 97–111 (1987)

42. Fidge, C.: Logical time in distributed computing systems. IEEE Computer 24, 28–33 (1991)
43. Fielding, R., Mogul, J.C., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.: Internet RFC

2616: Hypertext Transfer Protocol – HTTP/1.1 (1999)
44. Fischer, M.J.: The consensus problem in unreliable distributed systems. In: Foundations of

Computation Theory, Lecture Notes in Computer Science, vol. 158, pp. 127–140. Springer-
Verlag (1983)

45. Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed consensus
problems. Distrib. Comput. 1, 26–39 (1986)

References 379

46. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of byzantine consensus with one
faulty process. In: Proc. 2nd ACM Symp. on Principles of Database Syst., pp. 1–7 (1983)

47. Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a New Computing Infrastructure,
second edn. Morgan Kaufmann (2003). ISBN 1-55860-933-4

48. Francez, N.: Distributed termination. ACM Trans. Progr. Lang. Syst. 2(1), 42–55 (1980)
49. Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A., Stewart, L.:

Internet RFC 2617: HTTP Authentication: Basic and Digest Access Authentication (1999)
50. Frey, D., Adams, R.: !%@:: A Directory of Electronic Mail Addressing and Networks.

O’Reilly and Associates (1990)
51. Gibbons, P.B.: A stub generator for multilanguage RPC in heterogeneous environments.

IEEE Trans. Software Eng. SE-13(1), 77–87 (1987)
52. Gligor, V.D., Shattuck, S.H.: Deadlock detection in distributed systems. IEEE Trans. on

Software Engineering SE-6(5), 435–440 (1980)
53. Gordon, J.: Strong RSA keys. Electronics Letters 20(5), 514–516 (1984)
54. Gray, J.: Notes on data base operating systems. In: R. Bayer, et al. (eds.) Operating Systems –

An Advanced Course, Lecture Notes in Computer Science, vol. 60, pp. 393–481. Springer-
Verlag (1978)

55. Griffiths, J.M.: ISDN Explained, second edn. John Wiley & Sons (1992)
56. Günther, K.D.: Prevention of deadlocks in packet-switched data transport systems. IEEE

Trans. on Communications COM-29(4), 512–524 (1981)
57. Hailpern, B.: Verifying Concurrent Processes Using Temporal Logic, Lecture Notes in Com-

puter Science, vol. 129. Springer-Verlag (1982)
58. Halsall, F.: Computer Networking and the Internet, fifth edn. Addison-Wesley (2005). ISBN

0-321-26358-8
59. Hayes, J.P., Mudge, T.: Hypercube supercomputers. Proc. IEEE 77(12), 1829–1841 (1989)
60. Henshall, J., Shaw, S.: OSI Explained: End-to-end Computer Communication Standards.

Ellis Horwood (1990)
61. Hirschberg, D.S., Sinclair, J.B.: Decentralized extrema-finding in circular configurations of

processors. Commun. ACM 23(11), 627–628 (1980)
62. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 8(21), 666–677

(1978)
63. Hoare, C.A.R.: A calculus of total correctness for communicating processes. Sci. Comput.

Program. 1, 49–72 (1981)
64. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall International (1985)
65. Holzmann, G.: Design and Validation of Computer Protocols. Prentice-Hall International

(1991)
66. Hull, R., Su, J.: Tools for composite web services: A short overview. SIGMOD Record 34(2),

86–95 (2005)
67. Irland, M.I.: Buffer management in a packet switch. IEEE Trans. on Communications COM-

26(3), 328–327 (1978)
68. Jacobsen, V.: Congestion avoidance and control. In: Proc. ACM SIGCOMM’88, Stanford,

California, pp. 314–329. ACM (1988)
69. Jain, R.: Congestion control in computer networks: Issues and trends. IEEE Network Maga-

zine pp. 24–30 (1990)
70. Jain, R.: Congestion control and traffic management in ATM networks: Recent advances and

a survey. Comp. Networks and ISDN Syst. 28(13), 1723–1738 (1996)
71. Johnson, D.B., Maltz, D.A., Broch, J.: Dsr: The dynamic source routing protocol for multi-

hop wireless ad hoc networks. In: C.E. Perkins (ed.) Ad Hoc Networking, chap. 5, pp.
139–172. Addison-Wesley (2001)

72. Jones, C.B.: Systematic Software Development Using VDM, second edn. Prentice Hall In-
ternational (1990)

73. King, P.J.B.: Computer and Communication Systems Performance Modelling. Prentice-Hall
International (1990)

74. Kung, H.T., Robinson, J.T.: Optimistic methods for concurrency control. ACM Trans. Data-
base Syst. 6(2), 213–226 (1981)

380 References

75. Lamport, L.: Time, clocks and the ordering of events in a distributed system. Commun. ACM
21(7), 558–565 (1978)

76. Lamport, L.: Specifying concurrent program modules. ACM Trans. Progr. Lang. Syst. 5(2),
190–222 (1983)

77. Lamport, L.: The weak Byzantine Generals problem. J. ACM 30(3), 668–676 (1983)
78. Lamport, L., Melliar-Smith, P.M.: Byzantine clock synchronization. In: Proc. 3rd ACM

Symp. on Principles of Distrib. Comput., pp. 68–74 (1984)
79. Lamport, L., Melliar-Smith, P.M.: Synchronizing clocks in the presence of faults. J. ACM

32(1), 52–78 (1985)
80. Lamport, L., Shostak, R., Pease, M.: The Byzantine Generals problem. ACM Trans. Progr.

Lang. Syst. 4(3), 382–401 (1982)
81. Lampson, B.W.: Atomic transactions. In: B.W. Lampson, et al. (eds.) Distributed Systems –

Architecture and Implementation, Lecture Notes in Computer Science, vol. 105, pp. 246–265.
Springer-Verlag (1980)

82. Lindsay, B., Selinger, P., Galtieri, C., Gray, J., Lorie, R., Putzolu, F., Traiger, I., Wade, B.:
Single and multi-site recovery facilities. In: I.W.Draffan, F. Poole (eds.) Distributed Data
Bases. Cambridge University Press (1980)

83. Liskov, B.: The Argus language and system. In: M. Paul, H.J. Siegert (eds.) Distributed
Systems – Methods and Tools for Specification, Lecture Notes in Computer Science, vol.
190, pp. 123–132. Springer-Verlag (1985)

84. Lynch, N.A.: A hundred impossibility proofs for distributed computing. In: Proc. 8th ACM
Symp. on Principles of Distrib. Comput., pp. 1–27 (1989)

85. Majithia, J., Irland, M., Grangé, J.L., Cohen, N., O’Donnell, C.: Experiments in congestion
control techniques. In: J.L. Grangé, M. Gien (eds.) Flow Control in Computer Networks.
North-Holland (1979)

86. Mattern, F.: Virtual time and global states of distributed systems. In: M. Cosnard, P. Quinton
(eds.) Parallel and Distributed Algorithms, pp. 215–226. Elsevier Science Publishers (1989)

87. McEliece, R.: The Theory of Information and Coding. Addison-Wesley (1977)
88. Menasce, D., Muntz, R.: Locking and deadlock detection in distributed databases. IEEE

Trans. Software Eng. SE-5(3), 195–202 (1979)
89. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography.

CRC Press (1997). ISBN 0-8493-8523-7
90. Merkle, R.C., Hellman, M.E.: On the security of multiple encryption. Commun. ACM 24,

465–467 (1981)
91. Merlin, P.M., Schweitzer, P.J.: Deadlock avoidance in store-and-forward networks – i: Store-

and-forward deadlock. IEEE Trans. on Communications COM-28(3), 345–354 (1980)
92. Mills, D.L.: Internet time synchronization: The Network Time Protocol. IEEE Trans. on

Communications 39(10), 1482–1493 (1991)
93. Mills, D.L.: Improved algorithms for synchronizing computer network clocks. IEEE/ACM

Trans. on Networking 3(3), 245–254 (1995)
94. Milner, R.: A Calculus of Communicating Systems, Lecture Notes in Computer Science,

vol. 92. Springer-Verlag (1980) ISBN 0-13-114984-9
95. Milner, R.: Communication and Concurrency. Prentice-Hall International (1989)
96. Mohan, C., Lindsay, B.: Efficient commit protocols for the tree of processes model of dis-

tributed transactions. In: Proc. 2nd ACM SIGACT/SIGOPS Symp. on Principles of Distrib.
Comput., Montreal, Canada, pp. 76–88 (1983)

97. Mohan, C., Strong, R., Finkelstein, S.: Method for distributed transaction commit and recov-
ery using Byzantine agreement within clusters of processors. In: Proc. 2nd ACM Symp. on
Principles of Distrib. Comput., pp. 29–43 (1983)

98. Mullender, S. (ed.): Distributed Systems. Addison-Wesley (1989)
99. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large networks of

computers. Commun. ACM 21(12), 993–999 (1978)
100. Needham, R.M., Schroeder, M.D.: Authentication revisited. ACM Op. Syst. Review 21(1),

7 (1987)

References 381

101. Object Management Group, Inc.: Common Object Request Broker Architecture, V2.3.1
(1999)

102. Olderog, E.R., Hoare, C.A.R.: Specification-oriented semantics for communicating
processes. Acta Inf. 23(9), 9–66 (1986)

103. Omicini, A., Zambonelli, F., Klusch, M., Tolksdorf, R. (eds.): Coordination of Internet
Agents: Models, Technologies, and Applications. Springer-Verlag (2001). ISBN 3-540-
41613-7

104. Pachl, J., Korach, E., Rotem, D.: Lower bounds for distributed maximum-finding algorithms.
J. ACM 31(4), 905–919 (1984)

105. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. J. ACM
27(2), 228–234 (1980)

106. Pfleeger, C.P., Pfleeger, S.L.: Security in Computing, fourth edn. Prentice Hall (2006). ISBN
0-13-239077-4

107. Pitt, D.A., Sy, K.K., Donnan, R.A.: Source routing for bridged local area networks. In:
K. Kümmerle, J. Limb, F. Tobagi (eds.) Advances in Local Area Networks, pp. 517–530.
IEEE, IEEE Press (1987)

108. Proakis, J.G.: Digital Communications, third edn. McGraw-Hill (1995). ISBN 0-070-51726-
6

109. Ramakrishnan, K., Floyd, S.: Internet RFC 2481: A Proposal to Add Explicit Congestion
Notification (ECN) to IP (1999)

110. Rivest, R.L., Shamir, A., Adelman, L.: A method for obtaining digital signatures and public-
key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

111. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall (1998). ISBN 0-13-
674409-5

112. Schneider, F.B., Gries, D., Schlichting, R.D.: Fault-tolerant broadcasts. Sci. Comput. Pro-
gram. 4(1), 1–15 (1984)

113. Schneier, B.: Applied Cryptography, second edn. John Wiley & Sons (1996). ISBN 0-471-
12845-7

114. Shannon, C.E.: Communication theory of secrecy systems. Bell System Tech. J. 27, 657–715
(1949)

115. Shoch, J.: Inter-network naming, addressing and routing. In: Proc. COMPCON’78, pp. 72–
79 (1978)

116. Shreedhar, M., Varghese, G.: Efficient fair queuing using deficit round-robin. IEEE/ACM
Trans. on Networking 4(3), 375–385 (1996)

117. Skeen, D.: Nonblocking commit protocols. In: Proc. ACM/SIGMOD Conf. on Manag. of
Data, Ann Arbor, USA, pp. 133–142 (1981)

118. Spector, A.Z., Daniels, D.S., Duchamp, D.J., Eppinger, J.L., Pausch, R.: Distributed transac-
tions for reliable systems. In: Proc. 10th. ACM Symp. on Op. Syst. Principles, pp. 127–146
(1985)

119. Spector, A.Z., Schwartz, P.M.: Transactions: A construct for reliable distributed computing.
ACM Op. Syst. Review 17(2), 18–35 (1983)

120. Stallings, W.: Data and Computer Communications, eighth edn. Prentice Hall (2007). ISBN
0-13-243310-9

121. Stallings, W.: Local and Metropolitan Area Networks, sixth edn. Prentice Hall (2000). ISBN
0-13-012939-9

122. Stallings, W.: Cryptography and Network Security, fourth edn. Prentice Hall (2006). ISBN
0-13-187316-4

123. Tomlinson, R.S.: Selecting sequence numbers. In: Proc. ACM SIGCOMM/SIGOPS Inter-
process Communication Workshop, pp. 11–23. ACM (1975)

124. Waite, W.M., Goos, G.: Compiler Construction. Springer-Verlag (1985)
125. Walrand, J.: Communication Networks: A first course. Irwin (1991)
126. Watson, R.W.: Identifiers (naming) in distributed systems. In: B.W. Lampson, et al. (eds.)

Distributed Systems – Architecture and Implementation, Lecture Notes in Computer Science,
vol. 105, pp. 191–210. Springer-Verlag (1980)

382 References

127. Weihl, W.E.: Theory of nested transactions. In: S. Mullender (ed.) Distributed Systems.
Addison-Wesley (1989)

128. Zhou, C., Hoare, C.A.R.: Partial correctness of communicating processes and protocols.
Tech. Monograph PRG-20, Oxford University Computing Laboratory, Programming Re-
search Group (1981)

Standards
129. CCITT: Recommendation X.25: Interface between Data Terminal Equipment (DTE) and

Data Circuit Equipment (DCE) for Terminals Operating in the Packet Mode and Connected
to Public Data Networks by Dedicated Circuit (1988)

130. CCITT: Recommendation X.121: International Numbering Plan for Public Data Networks
(1988)

131. International Standards Organisation: International Standard ISO4335: Data Communica-
tion: HDLC – Elements of Procedure (1979)

132. International Standards Organisation: International Standard ISO6093: Information Process-
ing – Representation of Numerical Values in Character Strings for Information Interchange
(1985)

133. International Standards Organisation: International Standard ISO7498: Information technol-
ogy – Open Systems Interconnection – Basic Reference Model (1984). This is identical to
CCITT Recommendation X.200

134. International Standards Organisation: International Standard ISO7498-2: Information tech-
nology – Open Systems Interconnection – Basic Reference Model – Part 2: Security Archi-
tecture (1989). This is identical to CCITT Recommendation X.800

135. International Standards Organisation: International Standard ISO7498-3: Information tech-
nology – Open Systems Interconnection – Basic Reference Model – Part 3: Naming and
Addressing (1997). This is identical to CCITT Recommendation X.650

136. International Standards Organisation: International Standard ISO7498-4: Information tech-
nology – Open Systems Interconnection – Basic Reference Model – Part 4: Management
Framework (1989). This is identical to CCITT Recommendation X.700

137. International Standards Organisation: International Standard ISO8072: Information technol-
ogy – Open Systems Interconnection – Transport Service Definition (1996). This is identical
to CCITT Recommendation X.214

138. International Standards Organisation: International Standard ISO8073: Information technol-
ogy – Open Systems Interconnection – Connection Oriented Transport Protocol Specification
(1997). This is identical to CCITT Recommendation X.224

139. International Standards Organisation: International Standard ISO8326: Information technol-
ogy – Open Systems Interconnection – Basic Connection Oriented Session Service Definition
(1996). This is identical to CCITT Recommendation X.215

140. International Standards Organisation: International Standard ISO8327: Information technol-
ogy – Open Systems Interconnection – Basic Connection Oriented Session Protocol Specifi-
cation (1996). This is identical to CCITT Recommendation X.225

141. International Standards Organisation: International Standard ISO8348: Data Communica-
tions – Network Service Definition (2002)

142. International Standards Organisation: International Standard ISO8473-1: Data Communica-
tions – Protocol for Providing the Connectionless-mode Network Service (1998)

143. International Standards Organisation: International Standard ISO8473-3: Data Communica-
tions – Protocol for providing the Connectionless-mode Network Service: Provision of the
underlying service by an X.25 subnetwork (1995)

144. International Standards Organisation: International Standard ISO8571-1: Information tech-
nology – Open Systems Interconnection – File Transfer, Access and Management – Part 1:
General introduction (1988)

References 383

145. International Standards Organisation: International Standard ISO8571-2: Information tech-
nology – Open Systems Interconnection – File Transfer, Access and Management – Part 2:
Virtual Filestore Definition (1988)

146. International Standards Organisation: International Standard ISO8571-3: Information tech-
nology – Open Systems Interconnection – File Transfer, Access and Management – Part 3:
File Service Definition (1988)

147. International Standards Organisation: International Standard ISO8571-4: Information tech-
nology – Open Systems Interconnection – File Transfer, Access and Management – Part 4:
File Protocol Specification (1988)

148. International Standards Organisation: International Standard ISO8602: Information technol-
ogy – Protocol for providing the OSI Connectionless-mode Transport Service (1995)

149. International Standards Organisation: International Standard ISO8649: Information technol-
ogy – Open Systems Interconnection – Service definition for the Association Control Service
Element (1996)

150. International Standards Organisation: International Standard ISO8650–1: Information tech-
nology – Open Systems Interconnection – Connection-oriented protocol for the Association
Control Service Element: Protocol specification (1996)

151. International Standards Organisation: International Standard ISO8802-2: Information tech-
nology – Telecommunications and information exchange between systems – Local and
metropolitan area networks – Specific requirements – Part 2: Logical link control (1998).
This is identical to IEEE Standard 802.2

152. International Standards Organisation: International Standard ISO8802-3: Information tech-
nology – Telecommunications and information exchange between systems – Local and
metropolitan area networks – Specific requirements – Part 3: Carrier sense multiple access
with collision detection (CSMA/CD) access method and physical layer specifications (2000).
This is identical to IEEE Standard 802.3

153. International Standards Organisation: International Standard ISO8802-4: Information tech-
nology – Telecommunications and information exchange between systems – Local and
metropolitan area networks – Specific requirements – Part 4: Token bus access method and
physical layer specifications (1990). This is identical to IEEE Standard 802.4

154. International Standards Organisation: International Standard ISO8802-5: Information tech-
nology – Telecommunications and information exchange between systems – Local and
metropolitan area networks – Specific requirements – Part 5: Token ring access method and
physical layer specifications (1998). This is identical to IEEE Standard 802.5

155. International Standards Organisation: International Standard ISO8802-11: Information tech-
nology – Telecommunications and information exchange between systems – Local and
metropolitan area networks – Specific requirements – Part 11: Wireless LAN Medium Ac-
cess Control (MAC) and Physical Layer (PHY) specifications (1999). This is identical to
IEEE Standard 802.11

156. International Standards Organisation: International Standard ISO8807: Information technol-
ogy – Open Systems Interconnection – LOTOS: A Formal Description Technique based on
the Temporal Ordering of Observational Behaviour (1988)

157. International Standards Organisation: International Standard ISO8823: Information technol-
ogy – Open Systems Interconnection – Connection Oriented Presentation Protocol: Protocol
specification (1994). This is identical to CCITT Recommendation X.226

158. International Standards Organisation: International Standard ISO8824-1: Information tech-
nology – Abstract Syntax Notation One (ASN.1): Specification of basic notation (2002). This
is identical to CCITT Recommendation X.208

159. International Standards Organisation: International Standard ISO8825-1: Information tech-
nology – ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules (DER) (2002). This is identical
to CCITT Recommendation X.209

160. International Standards Organisation: International Standard ISO8825-2: Information tech-
nology – ASN.1 encoding rules: Specification of Packed Encoding Rules (PER) (2002)

384 References

161. International Standards Organisation: International Standard ISO8825-4: Information tech-
nology – ASN.1 encoding rules: XML Encoding Rules (XER) (2002)

162. International Standards Organisation: International Standard ISO8831: Information technol-
ogy – Open Systems Interconnection – Job Transfer and Manipulation concepts and services
(1989)

163. International Standards Organisation: International Standard ISO8832: Information technol-
ogy – Open Systems Interconnection – Specification of the Basic Class Protocol for Job
Transfer and Manipulation (1989)

164. International Standards Organisation: International Standard ISO8879: Information Process-
ing – Text and Office Systems – Standard General Markup Language (SGML) (1986)

165. International Standards Organisation: International Standard ISO9040: Information technol-
ogy – Open Systems Interconnection – Virtual Terminal Basic Class Service (1997)

166. International Standards Organisation: International Standard ISO9041–1: Information tech-
nology – Open Systems Interconnection – Virtual Terminal Basic Class Protocol – Part1:
Specification (1997)

167. International Standards Organisation: International Standard ISO9066-1: Information tech-
nology – Text Communication – Reliable Transfer, Part 1: Model and Service Definition
(1989). This is identical to CCITT Recommendation X.218

168. International Standards Organisation: International Standard ISO9066-2: Information tech-
nology – Text Communication – Reliable Transfer, Part 2: Protocol Specification (1989).
This is identical to CCITT Recommendation X.228

169. International Standards Organisation: International Standard ISO9072-1: Information tech-
nology – Text Communication – Remote Operations, Part 1: Model, Notation and Service
Definition (1989). This is identical to CCITT Recommendation X.219

170. International Standards Organisation: International Standard ISO9072-2: Information tech-
nology – Text Communication – Remote Operations, Part 2: Protocol Specification (1989).
This is identical to CCITT Recommendation X.229

171. International Standards Organisation: International Standard ISO9314-2: Information tech-
nology – Fiber Distributed Data Interface (FDDI) – Part 2: Token Ring Media Access Control
(MAC) (1989)

172. International Standards Organisation: International Standard ISO9545: Information technol-
ogy – Open Systems Interconnection – Application Layer structure (1994)

173. International Standards Organisation: International Standard ISO9594-1: Information tech-
nology – Open Systems Interconnection – The Directory – Part 1: Overview of concepts,
models and service (1998). This is identical to CCITT Recommendation X.500

174. International Standards Organisation: International Standard ISO9594-2: Information tech-
nology – Open Systems Interconnection – The Directory – Part 2: Models (1998). This is
identical to CCITT Recommendation X.501

175. International Standards Organisation: International Standard ISO9594-3: Information tech-
nology – Open Systems Interconnection – The Directory – Part 3: Abstract service definition
(1998). This is identical to CCITT Recommendation X.511

176. International Standards Organisation: International Standard ISO9594-4: Information tech-
nology – Open Systems Interconnection – The Directory – Part 4: Procedures for distributed
operation (1998). This is identical to CCITT Recommendation X.518

177. International Standards Organisation: International Standard ISO9594-5: Information tech-
nology – Open Systems Interconnection – The Directory – Part 5: Protocol specifications
(1998). This is identical to CCITT Recommendation X.519

178. International Standards Organisation: International Standard ISO9594-6: Information tech-
nology – Open Systems Interconnection – The Directory – Part 6: Selected attribute types
(1998). This is identical to CCITT Recommendation X.520

179. International Standards Organisation: International Standard ISO9594-7: Information tech-
nology – Open Systems Interconnection – The Directory – Part 7: Selected object classes
(1998). This is identical to CCITT Recommendation X.521

References 385

180. International Standards Organisation: International Standard ISO9594-8: Information tech-
nology – Open Systems Interconnection – The Directory – Part 8: Authentication framework
(1998). This is identical to CCITT Recommendation X.509

181. International Standards Organisation: International Standard ISO9595: Information technol-
ogy – Open Systems Interconnection – Common Management Information Service (CMIS)
(1991). This is identical to CCITT Recommendation X.710

182. International Standards Organisation: International Standard ISO9596-1: Information tech-
nology – Open Systems Interconnection – Common Management Information Protocol –
Part 1: Specification (1991). This is identical to CCITT Recommendation X.711

183. International Standards Organisation: International Standard ISO9796-2: Information tech-
nology – Security techniques – Digital signature schemes giving message recovery – Part 2:
Integer factorization based mechanisms (2002)

184. International Standards Organisation: International Standard ISO9796-3: Information tech-
nology – Security techniques – Digital signature schemes giving message recovery – Part 3:
Discrete logarithm based mechanisms (2000)

185. International Standards Organisation: International Standard ISO9797-1: Information tech-
nology – Security techniques – Message Authentication Codes (MACs) – Part 1: Mecha-
nisms using a block cipher (1999)

186. International Standards Organisation: International Standard ISO9797-2: Information tech-
nology – Security techniques – Message Authentication Codes (MACs) – Part 2: Mecha-
nisms using a dedicated hash function (2002)

187. International Standards Organisation: International Standard ISO9798-2: Information tech-
nology – Security techniques – Entity authentication – Part 2: Mechanisms using symmetric
encipherment algorithms (1999)

188. International Standards Organisation: International Standard ISO9798-3: Information tech-
nology – Security techniques – Entity authentication – Part 3: Mechanisms using digital
signature techniques (1998)

189. International Standards Organisation: International Standard ISO9804: Information technol-
ogy – Open Systems Interconnection – Service definition for the Commitment, Concurrency
and Recovery service element (1998). This is identical to CCITT Recommendation X.851

190. International Standards Organisation: International Standard ISO9805-1: Information tech-
nology – Open Systems Interconnection – Protocol for the Commitment, Concurrency and
Recovery service element: Protocol specification (1998). This is identical to CCITT Recom-
mendation X.852

191. International Standards Organisation: International Standard ISO10021-1: Information tech-
nology – Open Systems Interconnection – Message Oriented Text Interchange Systems (MO-
TIS) – Part 1: System and service overview (1992). This is identical to CCITT Recommen-
dation X.400

192. International Standards Organisation: International Standard ISO10021-2: Information tech-
nology – Open Systems Interconnection – Message Oriented Text Interchange Systems (MO-
TIS) – Part 2: Overall Architecture (1992). This is identical to CCITT Recommendation
X.402

193. International Standards Organisation: International Standard ISO10021-6: Information tech-
nology – Open Systems Interconnection – Message Oriented Text Interchange Systems (MO-
TIS) – Part 6: Protocol Specifications (1992). This is identical to CCITT Recommendation
X.419

194. International Standards Organisation: International Standard ISO10021-7: Information
technology – Open Systems Interconnection – Message Oriented Text Interchange Systems
(MOTIS) – Part 7: Interpersonal Messaging System (1992). This is identical to CCITT
Recommendation X.420

195. International Standards Organisation: International Standard ISO10026-1: Information tech-
nology – Open Systems Interconnection – Distributed Transaction Processing – Part 1: OSI
TP Model (1998)

386 References

196. International Standards Organisation: International Standard ISO10026-2: Information tech-
nology – Open Systems Interconnection – Distributed Transaction Processing – Part 2: OSI
TP Service (1998)

197. International Standards Organisation: International Standard ISO10026-3: Information tech-
nology – Open Systems Interconnection – Distributed Transaction Processing – Part 3: Pro-
tocol specification (1998)

198. International Standards Organisation: International Standard ISO10038: Information tech-
nology – Local area Networks – MAC sublayer interconnection (MAC bridging) (1992)

199. International Standards Organisation: International Standard ISO10038/AM2: Information
technology – Local area Networks – MAC sublayer interconnection – Amendment 2: MAC
bridging – Source routing supplement (1992)

200. International Standards Organisation: International Standard ISO10118-2: Information tech-
nology – Security techniques – Hash-functions – Part 2: Hash-functions using an n-bit block
cipher (2000)

201. International Standards Organisation: International Standard ISO10118-3: Information tech-
nology – Security techniques – Hash-functions – Part 3: Dedicated hash-functions (2004)

202. International Standards Organisation: International Standard ISO10162: Information tech-
nology – Documentation – Application Service for Information Systems – Bibliographic
Search, Retrieval and Update Service (1993)

203. International Standards Organisation: International Standard ISO10163: Information tech-
nology – Documentation – Application Protocol for Information Systems – Bibliographic
Search, Retrieval and Update Protocol (1993)

204. International Standards Organisation: International Standard ISO10164-1: Information tech-
nology – Open Systems Interconnection – Systems Management: Object Management Func-
tion (1993). This is identical to CCITT Recommendation X.730

205. International Standards Organisation: International Standard ISO10164-13: Information
technology – Open Systems Interconnection – Systems Management: Summarization Func-
tion (1995). This is identical to CCITT Recommendation X.738

206. International Standards Organisation: International Standard ISO10918-1: Information Tech-
nology – Digital compression and coding of continuous-tone still images – Part 1: Require-
ments and guidelines (1994)

207. International Standards Organisation: International Standard ISO11172-2: Information Tech-
nology – Coding of Moving Pictures and Associated Audio for Digital Storage Media at up
to about 1,5 Mbit/s – Part 2: Video (1993)

208. International Standards Organisation: International Standard ISO11578: Information tech-
nology – Open Systems Interconnection – Remote Procedure Call (RPC) (1996)

209. Internet: RFC 768: User Datagram Protocol (UDP) (1980)
210. Internet: RFC 791: Internet Protocol (1981). Identical to U.S. Department of Defense: MIL-

STD 1777: Military Standard Internet Protocol
211. Internet: RFC 792: Internet Control Message Protocol (1981)
212. Internet: RFC 793: Transmission Control Protocol (1981). Identical to U.S. Department of

Defense: MIL-STD 1778: Military Standard Transmission Control Protocol
213. Internet: RFC 821: Simple Mail Transfer Protocol (SMTP) (1982)
214. Internet: RFC 826: Ethernet Address Resolution Protocol: Or converting network protocol

addresses to 48-bit Ethernet address for transmission on Ethernet hardware (1982)
215. Internet: RFC 959: File Transfer Protocol (FTP) (1985)
216. Internet: RFC 977: Network News Transfer Protocol (1986)
217. Internet: RFC 1034: Domain Names – Concepts and Facilities (1987)
218. Internet: RFC 1035: Domain Names – Implementation and Specification (1987)
219. Internet: RFC 1157: Simple Network Management Protocol (SNMP) (1990)
220. Internet: RFC 1321: The MD5 Message-Digest Algorithm (1992)
221. Internet: RFC 1591: Domain Name System Structure and Delegation (1994)
222. Internet: RFC 1939: Post Office Protocol – Version 3 (1996)
223. Internet: RFC 2026: The Internet Standards Process – Revision 3 (1996)

References 387

224. Internet: RFC 2045: Multipurpose Internet Mail Extensions (MIME) Part One: Format of
Internet Message Bodies (1996)

225. Internet: RFC 2046: Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types
(1996)

226. Internet: RFC 2060: Internet Message Access Protocol, Version 4, rev.1 (1996)
227. Internet: RFC 2246: The TLS Protocol, Version 1.0 (1999)
228. Internet: RFC 2251: Lightweight Directory Access Protocol, Version 3 (1997)
229. Internet: RFC 2279: UTF-8, A Transformation Format of ISO 10646 (1998)
230. Internet: RFC 2315: PKCS #7: Cryptographic Message Syntax, Version 1.5 (1998)
231. Internet: RFC 2328: OSPF Version 2 (1998)
232. Internet: RFC 2373: IP Version 6 Addressing Architecture (1998)
233. Internet: RFC 2401: Security Architecture for the Internet Protocol (1998)
234. Internet: RFC 2402: IP Authentication Header (1998)
235. Internet: RFC 2403: The Use of HMAC-MD5-96 within ESP and AH (1998)
236. Internet: RFC 2404: The Use of HMAC-SHA-1-96 within ESP and AH (1998)
237. Internet: RFC 2405: The ESP DES-CBC Cipher Algorithm with Explicit IV (1998)
238. Internet: RFC 2406: IP Encapsulating Security Payload (1998)
239. Internet: RFC 2407: The Internet IP Security Domain of Interpretation for ISAKMP (1998)
240. Internet: RFC 2408: Internet Security Association and Key Management Protocol (ISAKMP)

(1998)
241. Internet: RFC 2409: The Internet Key Exchange (IKE) (1998)
242. Internet: RFC 2412: The Oakley Key Determination Protocol (1998)
243. Internet: RFC 2453: Routing Information Protocol, Version 2 (1998)
244. Internet: RFC 2630: Cryptographic Message Syntax (1999)
245. Internet: RFC 2633: S/MIME Version 3 Message Specification (1999)
246. Internet: RFC 2660: The Secure Hypertext Transfer Protocol (1999)
247. Internet: RFC 2965: HTTP State Management Mechanism (2000)
248. Internet: RFC 3447: Public Key Cryptography Standards (PKCS) #1: RSA Cryptography

Specifications, Version 2.1 (2003)
249. Internet: RFC 3561: Ad hoc On-Demand Distance Vector (AODV) Routing (2003)
250. Internet: RFC 3986: Uniform Resource Identifier (URI): Generic Syntax (2005)
251. Internet: RFC 4271: A Border Gateway Protocol 4 (BGP-4) (2006)
252. Internet: RFC 4632: Class Inter-Domain Routing (CIDR): The Internet Address Assignment

and Aggregation Plan (2006)
253. ITU-T: Recommendation G.709/Y.1331: Interfaces for the Optical Transport Network (2003)
254. ITU-T: Recommendation G.711: Pulse Code Modulation (PCM) of Voice Frequencies

(1972)
255. ITU-T: Recommendation I.321: B-ISDN Protocol Reference Model (1972)
256. National Bureau of Standards: Federal Information Processing Standard Publication 46: Dig-

ital Encryption Standard (1977)
257. National Bureau of Standards: Federal Information Processing Standard Publication 81: DES

Modes of Operation (1980)
258. National Institute of Standards and Technology: Federal Information Processing Standard

Publication 186: Digital Signature Standard (1994)
259. National Institute of Standards and Technology: Federal Information Processing Standard

Publication 197: Advanced Encryption Standard (2001)
260. National Institute of Standards and Technology: Federal Information Processing Standard

Publication 180–2: Secure Hash Standard (2002)
261. OASIS: Web Services Security: Username Token Profile 1.0 (2003)
262. OASIS: UDDI Spec Technical Committee Specification: UDDI Version 3.0.2 (2004)
263. OASIS: Web Services Security: SOAP Message Security 1.0 (2004)
264. OASIS: Web Services Security: X.509 Certificate Token Profile (2004)
265. OASIS: Web Services Business Process Execution Language Version 2.0 (2007)
266. W3C: Canonical XML (2001). This is identical to Internet RFC3076
267. W3C: XML Schema Part 1: Structures (2001)

388 References

268. W3C: XML Schema Part 2: Datatypes (2001)
269. W3C: XML Encryption Syntax and Processing (2002)
270. W3C: XML-Signature Syntax and Processing (2002). This is identical to Internet RFC3275
271. W3C: Extensible Markup Language (XML) 1.0, third edn. (2004)
272. W3C: Namespaces in XML 1.1 (2004)
273. W3C: SOAP Version 1.2 Part 0: Primer (Second Edition) (2007)
274. W3C: SOAP Version 1.2 Part 1: Messaging Framework (Second Edition) (2007)
275. W3C: SOAP Version 1.2 Part 2: Adjuncts (Second Edition) (2007)
276. W3C: Web Services Description Language (WSDL) Version 2.0. Part 0: Primer (2007)
277. W3C: Web Services Description Language (WSDL) Version 2.0. Part 1: Core Language

(2007)

Index

A

abort 130
provider 59

abort state 133
abstract datatype 303
acceptance 8
access management 333
ACID property 329
ACK 49, 76, 82
ack-PDU 73
ACK/NACK protocol 76
acknowledgment 54, 73

negative 76
positive 76

active group 61
active server page 343
activity 292, 293
activity attributes 322
ad hoc encoding of PDUs 241
Ad Hoc On-Demand Distance Vector (AODV)

229
adaptive routing 216, 219, 221, 223
address 192
address multiplexing 208
Address Resolution Protocol (ARP) 213
addressing 191–215

Internet 210–213
MHS 214
OSI 209–210
X.400 214

addressing structure 207–215
flat 209
hierarchic 208, 209
partitioned 208, 209, 219

Advanced Encryption Standard (AES) 160
agent 332

mobile 364
alias identifier 192
alphabet 8, 21
alternating bit protocol 80, 82, 91
alternative recipient 334
alternative route 83
anycast identifier 192
applet 343
Application layer structure 297
Application Service Element (ASE) 297
Application Service Object (ASO) 297
Application-entity-invocation 297
application-supported transaction 330
arbitrator 168
architecture

entity-based 197
layered 48, 64–68
server-based 197

ARP 213
ARPANET 67, 231
ASCII

encoding 251–270
ASE 297
ASE-invocation 297
ASN.1 295
ASO 297
assertion 29
association 298
asymmetric encipherment 156
asynchronous balanced mode (ABM) 276
asynchronous Byzantine agreement 141
asynchronous protocol 244
asynchronous response mode (ARM) 277
at-least-once semantics 304
at-most-once semantics 304
ATM

cell 236

389

390 Index

flow control 236
RM cell 236
switch 236

atomic action 301
atomic action tree 302, 330
atomic exchange 96

with errors 97
atomicity 329
attribute 194

address 214
audit trail 333
authentication 64, 170–183, 282, 318,

350–352, 355
mutual 171, 174, 350

Authentication Header (AH) 282
authentication protocol 172

public key 174
secret key 171, 172

authentication server 172
Autonomous System (AS) 225
availability 64

B

backward learning 222
BAN logic 175
base64 encoding 255
BASN.1 248, 295
behaviour 7

observable 3
Bellman-Ford routing 223
binary exponential backoff (BEB) 109, 234
binding 307, 310
B-ISDN 68
bit stuffing 244
block oriented service 56, 72
blocking commit algorithm 132
Border Gateway Protocol (BGP) 225
bound data 301
bridge 222, 228
Broadband ISDN (B-ISDN) 68
broadcast 200, 201

address 211
reliable 122–126

broadcast service 60, 121
buffer pool 231
buffer property 26
burst error 75
Business Process Execution Language (BPEL)

363
Byzantine agreement 135–141

asynchronous 141
strong 135–140
weak 140

Byzantine clock synchronisation 141,
146–148

Byzantine commitment 141
Byzantine generals problem, strong 135
Byzantine generals protocol 137, 139

C

C14N canonicalisation 270
cache

age 348
copy-back 350
directory 201
invalidation 349
max-age 349
residence time 348
revalidation 347
transparent 346
validator 348
web 346–350, 354
write-back 350
write-through 349

canonicalisation 270
capability data 293
Carrier Sense Multiple Access (CSMA) 106
causal ordering 141, 143
CBC mode 159, 160, 167
CCITT see ITU-T
CCR 134, 301–303, 319, 329
CCS 40
cell, ATM 236
centralised algorithm 202, 216
centralised commit protocol 130
centralised control 104, 276
centralised routing 216, 219–221
certificate 173, 174, 181, 256, 257, 318

reverse 183
certificate authority 173
Certification Authority (CA) 181–183
certification path 182
certification, of digital signature 168
chained sequence 330
chaining 201, 204
challenge-response 171, 173, 350
change of peer state 94
channel 21, 46

external 21
internal 21
perfect 45
protected 186

channel freezing 85
channel history 36
channel history semantics 26–35, 50
checksum 49, 73, 82

Index 391

checksum relation 73
choking 235
Cipher Block Chaining (CBC) mode 159,

160, 167
CipherSuite 318
ciphertext 156
circular extremum 127
Claim Token frame 129
Classless Inter-Domain Routing (CIDR) 212
client 97, 299, 303, 305
client-server 46
client-server model 299, 303–316, 326, 337
clock

Lamport 142
logical 142–143
real time 144–146
server 144
vector 143

clock synchronisation 141–148
Byzantine 141, 146–148
deterministic 144
probabilistic 145

clock system
δ -synchronised 144

code
(n,k) cyclic block 74
CRC 74
error-detecting 73
polynomial block 74

collision 106
Collision Detect (CD) 107
collision resistance 165, 166
collision, in CSMA/CD 108
commit 130
commit protocol

blocking 132, 134
centralised 130
non-blocking 132–134
three-phase 133
two-phase 133

commit state 133
commitment 121, 129–135, 140, 301

Byzantine 141
commitment unit 62, 130
Commitment, Concurrency and Recovery

(CCR) 134, 301–303, 319, 329
Common Management Information Protocol

(CMIP) 365
Common Management Information Service

(CMIS) 365
Common Object Request Broker Architecture

(CORBA) 199
communication

synchronised 45

communication event 20
communication pattern 321
compression 317
compression function 165
computer cluster 211
concatenation of traces 27
concurrency 301, 319
concurrency control 303, 328
concurrency set 133
confidentiality 64, 156, 167, 282, 355
confirm primitive 95
confirmed service 62, 94, 95, 130
confusion 157
congestion 219, 229–237
congestion avoidance 231
congestion collapse 229
congestion control 84, 231
Congestion Experienced (CE) marker 236
congestion window 233
Congestion Window Reduced (CWR) marker

236
connection establishment 58, 97
connection establishment phase 58
connection lifetime 59
connection release 58
connection release phase 59
connection-mode 59, 60, 100
connectionless-mode 59, 60, 100
consistency 129, 329
consistent event set 150, 152
constructed encoding 248
content type 333
contention protocol 106
contents type, for file 325
context selection 62
continuation 85
control

centralised 104, 276
distributed 106, 276, 278

control theory 234
cookie 352–353
coordination language 364
coordination level, in OSI TP 330
coordinator 130
CORBA 199, 306, 309
corruption 49, 73
country code 203
crash 83, 132
CRC code 74
credit 93
cryptographic checksum 164
cryptographic methods 155–164
cryptosystem 156

El Gamal 169

392 Index

public key 156, 160–164, 173–175
reversible 169
secret key 156–160, 171–173, 179

CSMA/CD 103, 105–109
CSP 7–43
cyclic redundancy check code 74

D

DARPA Internet 67
data compression 251
data confidentiality 64
Data Encryption Standard (DES) 158
data integrity 64
data token 102
data transfer phase 58, 96
data transparency 241, 244
data unit synchronisation 56, 72
data-PDU 73
datagram service 59
de-multiplexing 102
deadlock 9, 22, 54

avoidance 116, 319
detection 319
reassembly 115
recovery 116
store-and-forward 236

decipherment key 156
decryption 156
deferred delivery 333
δ -synchronised clock system 144
DES 158
deterministic access 103
deterministic clock synchronisation 144
DG 59
dialogue control 291
dialogue tree 329, 330
dialogue unit 292
dialogue, in OSI TP 329
diameter 84, 216
Diffie-Hellman key agreement 184, 282
diffusing computation 126, 201
diffusion 157
digital signature 167–170, 257, 270

with appendix 169
with message recovery 169

Digital Signature Algorithm (DSA) 169
Digital Signature Standard (DSS) 169
directory 192, 197, 199–203, 209, 238, 365

replicated 201
directory chaining 201, 204
Directory Information Tree (DIT) 196
directory routing 217
discarded PDU 84

discarding 231
distance vector routing 223–224
distributed algorithm 202, 216
distributed control 106, 276, 278
distributed database 319
distributed routing 216, 223–225
distributed snapshot 148–153
Distributed Transaction Processing, OSI

134, 329
distribution list 334
distributive function 28
divergence 39
DNS 204–207, 210

authoritative server 205
cache 204
forward lookup 204
inverse lookup 204, 207
iterative lookup 204
Rdata 207
recursive lookup 204
resolver 204
Resource Record (RR) 207
root server 205
RR type 207
server 204
TTL field 207
zone transfer 205

Document Type Definition (DTD) 260
DoD protocol 67, 281, 287, 326, 372
domain 197, 203, 208
domain identifier 208
Domain Name System (DNS) 204–207, 210
DTD 311
duplex communication 62, 101
durability 329
dynamic group 61
Dynamic Source Routing (DSR) 229
dynamic window protocol 93
dynamically allocated port 213

E

ECB mode 159
ECMA 371
ECN 236
ECN Capable Transport (ECT) marker 236
ECN echo marker 236
edge 215
El Gamal cryptosystem 169
election 121, 126–129

in bidirectional ring 129
in unidirectional ring 127

Electronic Code Book (ECB) mode 159
electronic mail 196, 214, 332–340

Index 393

elementary communication 21, 59
empty trace 27
Encapsulation Security Payload (ESP) 282
encipherment 156
encipherment key 156
encoded information type 333
encoding

ad hoc 241
ASCII 251–270
ASN.1 246–251
constructed 248
Matched tag 242
MIME 252–257
primitive 248
protocol 241–274
S/MIME 255–257
simple binary 241–244
TLV 241, 244–251
XDR 328
XML 251, 257–270

encryption 156, 317
end-of-contents octets 249
entity-based architecture 197
envelope 337
equivalence identifier 192
error control 73, 82
error resilience 82
error-detecting code 73
errors

classification 57
Ethernet 104
Euler’s theorem 162
event 7, 8, 27

external 8
initial 27
internal 8

exactly-once semantics 304
expedited data 63, 116, 293
Explicit Congestion Notification (ECN) 236
explicit feedback 235
Explicit Flow Control Indication (EFCI) 236
exploratory routing 226–229
Extensible Markup Language (XML) 257,

311
external channel 21
external event 8
external non-determinism 10, 14, 22, 32, 38

F

facility 71
FADU 322
fail-stop failure mode 123, 132, 135
failure 37

failure model 36
failure semantics 35–40
f ailures 36
fair access 103
fairness 10, 103, 110, 232
fault

message corruption 57, 82
message duplication 82
message loss 57, 82
spurious message 57

fault tolerance 3
fault-tolerant average 146
FDDI 279
Feistel network 158
fibre distributed data interface (FDDI) 279
file attributes 322
file transfer 322–329
fingerprint 164
finite-state machine 2
firewall 186
fixed window protocol 88
flag field 244
flat addressing structure 209
floating corpse 82, 85, 98, 99
flooding 216–217, 226
flow control 56, 87, 105, 119
flow control, used for congestion control 231
forbidden time zone 85
fragment 340
freshness lifetime 348
FTAM 322–325

regime 323
FTP 67, 326–328

control channel 326
data channel 327
file content 326
file structure 326
minimum implementation 327
transfer mode 327

functional unit 293, 324, 331
fundamental non-blocking theorem 133

G

gateway 114, 222, 347
generator polynomial 74, 75
generic identifier 192, 194
global alias 192
global context 193
global identifier 193
global state 58, 62, 81, 148–153, 232
go back n retransmission 90
grade of delivery 333
grid 364

394 Index

group identifier 192
group integrity 61

H

half duplex communication 62
Hamming distance 73
handshake level 329
handshake protocol 94, 95
handshake service 329
happened before relation 141, 142, 149, 152
HDLC 92, 105, 242, 276

asynchronous balanced mode (ABM) 276
asynchronous response mode (ARM) 277
command 242, 276
normal response mode (NRM) 276
primary 276
response 242, 276
secondary 276

hiding 11, 19, 22, 34, 39, 40
hierarchic addressing structure 208, 209
hierarchical network 219
history 26, 29, 36, 37
HMAC 167
hold for delivery 334
homogeneous distributed system 193
hop counter 84, 216, 222
hot potato algorithm 221
HTTP 342–356

authentication 350–352
cache control 344, 349–350, 354
compression 344
cookie 352–354
credentials 344
DELETE method 349
GET method 344, 345, 349, 356
media type 344, 357
methods 343
OPTIONS method 346
POST method 349, 357
PUT method 349, 356
request 356
response 357
revalidation 349
secure 354–356
Secure method 355
session 352

hypercube 238
Hypertext Markup Language (HTML) 342
Hypertext Transfer Protocol (HTTP)

342–356

I

IAB 372

IANA 213, 253
ICMP 236, 281
identifier 191

alias 192
anycast 192
equivalence 192
generic 192, 194
global 193
group 192
local implementation 192
multicast 192
specific 194
unique local 192

IEC 66, 371
IEEE 66, 371

802-series standards 279, 372
IESG 374
implicit numbering 112
in-addr.arpa 205
indicated error 58
indication primitive 95
inference 30
inference rule 30, 176
∀-introduction 30, 37
Alternative 32, 38
And-Elim 177
And-Intro 177
Believe And-Elim 177
Believe key symmetry 177
Believing is seeing 178
Condition 34, 40
Conjunction 30, 37
Consequence 30, 37
Decryption 178
Emptiness 30, 38
Encryption 178
Freshness extends 178
Freshness extension 178
Hiding 34, 39, 40
Input 31, 38
Interleaving 32, 39
Jurisdiction 177
Key symmetry 177
Message meaning 176
Nonce verification 176
Output 31, 38
Parallelism 33, 39
Piping 34, 40
Recursion 35, 40
Renaming 33, 39
Said And-Elim 177
See components 177
Triviality 30, 37

Index 395

Union 32, 38
inference system 176
information system 364
initial event 27
initials 27, 36
initiating user 94
input 22
instance of communication 59
integrity 64, 164–168, 355
interaction point 45
interactive consistency 135, 147

conditions 135
interactive convergence 146
Interface Definition Language (IDL) 305
interface repository 307
interior gateway routing 225
interleaving 10, 18, 22, 32, 39
intermediate node 215
internal channel 21
internal event 8
internal non-determinism 10, 14, 22, 32, 38
Internet

address 210, 339
addressing 210–213
Application layer 67
DARPA 67
Data Link layer 67
mail 337–340
naming 203–207
Network layer 67
Physical layer 67
protocol

DoD (IP) 281
standard 67, 372, 374–375

FTP 67, 326–328
ICMP 281
IP 281
SMTP 67, 337
TCP 67, 287
TELNET 67
UDP 67, 288

Transport layer 67
Internet Architecture Board (IAB) 372
Internet Assigned Numbers Authority (IANA)

203, 213
Internet Engineering Steering Group (IESG)

374
Internet Security Association and Key

Management Protocol (ISAKMP) 282
interpersonal message (IPM) 336
Interpersonal Messaging Service (IPMS)

335–337
interpersonal notification (IPN) 336
invariant 29

inverse broadcast 60
invoked group 61
IP 236, 281
IP address 210
IP router 236
IP time-to-live counter 85
IPM 336

body 336
body part 336
heading 336
heading field 336

IPN 336
IPsec 282–283
IPv6 212
Irland’s Square Root rule 231
isarithmic control 232
ISO 66, 371, 372

Session protocol 102
Session service 96, 102
Transport protocol 99, 100, 233

Quality of Service 284
timers 285

isolated algorithm 202, 216
isolated routing 216, 221–222
isolation 301, 329
ITU-T 66, 371, 373

recommendation 371

J

Java RMI 310
jitter 311
Job Transfer and Manipulation (JTM) 134

K

key 156
key agreement 184

Diffie-Hellman 184, 282
Oakley 282

key exchange 184–186, 318
key exchange protocol 172
key lifetime 184
key transport 184, 318

L

labelled transition system 26
Lamport clock 142
LAN 63, 101, 104, 122, 129, 199
language

context-free 2
regular 2

latest delivery time 333

396 Index

layer function 71
layered architecture 48, 64–68
length, of trace 28
lifetime

connection 59
PDU 83

linear system 234
link capacity 218
link state routing 224–225
link staterouting 223
livelock 39, 54
liveness property 26, 36
local area network (LAN) 63, 101, 104, 119,

122, 129, 199
LLC sub-layer 65, 278
MAC sub-layer 65, 278

local context 193
local implementation identifier 192
lock 303, 319, 328
locking granularity 322
logical clock 142–143
LOTOS 40

M

M/M/1 queuing model 218
mailbox 337, 339
ma jority 136, 137
man-in-the-middle attack 185
Manchester encoding 42
marker 150
marshalling 305
masquerading 82, 83
master 302
master secret 319
Matched tag encoding of PDUs 242
maybe semantics 305
MD5 165, 256, 345, 350
MDx-MAC 166
Message Authentication Code (MAC) 166,

317
message corruption fault 57, 82
message digest 164, 169, 350
message duplication fault 82
message exchange pattern (MEP) 359
message handling 196, 214, 332–340
message identification 333
message loss 58
message loss fault 57, 82
Message Oriented Middleware (MOM) 309
message oriented service 56
message recovery 169
Message Transfer Agent (MTA) 332

Message Transfer sub-layer, in MOTIS
333–335

Message Transfer System (MTS) 332
middleware 309–319

MOM 309
ROI 309
stream-oriented 310

MIME 252, 339
body 252
composite type 252, 253
discrete type 252, 253
encoding 252–257
entity 252
header 252
subtype 252, 253, 255
type 252, 253, 255, 344

Mobile Ad Hoc Network (MANET) 228
mobile agent 364
monotonic function 28
monotype 194
MOTIS 196, 214, 332–337
MQSeries 310
multi-drop link 276
multi-peer communication 60
multi-peer service 101, 121, 130
multicast group 210
multicast identifier 192
multicast service 60, 121
multiplexing 102, 276

downward 110
upward 110

multiplier 42
mutual exclusion 143

N

(N)-address 208
(N)-PCI 72
(N)-PDU 72
N-peer communication 2
(N)-protocol-control-information 72
(N)-protocol-data-unit 72
(N)-SAP 72, 208
(N)-SDU 72
(N)-service 72
(N)-service-data-unit 72
(N)-service-user 72
(N)-title 208
(N)-user 72, 208
NACK 50, 76
name 192, 203
name server 197, 198
naming 191–215

domain 203

Index 397

Internet 203–207
naming authority 203
naming domain 197, 199
natural deduction 30
negative acknowledgment 76
netmask 210
network

hierarchical 219
network class 210
network edge 215
Network File System (NFSTM) 328
network node 215
Network Time Protocol (NTP) 145, 211
NFSTM 328
node 215
non-adaptive routing 216, 217
non-blocking commit algorithm 132
non-delivery 333
non-determinism

external 10, 14, 22, 32, 38
internal 10, 14, 22, 32, 38

non-repudiation 64, 168, 355
nonce 171, 318, 350
normal response mode (NRM) 276

O

Oakley key agreement 282
OASIS consortium 375
object 305
object oriented programming 304
offer 8
one-time pad 157
one-way hash function 164

MD5 165
RIPEMD-160 165
SHA 165, 169

Open Shortest Path First (OSPF) 225
optimistic control 320
O/R address 214
O/R name 196
oral messages 136
origin server 346
OSI

addressing 209–210
Application layer 65, 66, 297–364
Application layer structure 297
Association Control ASE (ACSE) 298
CCR 134, 302–303
Data Link layer 65, 276–279
Directory 365
File Transfer (FTAM) 322–325
Job Transfer (JTM) 134
Lower Layers 275–289

Message Handling (MOTIS) 196, 214,
332–337

Network layer 65, 66, 209, 215, 280–283
Physical layer 65
Presentation layer 65, 66, 295–297
Reference Model 3, 64–66, 71
Remote Operations ASE (ROSE) 299
Session layer 65, 96, 102, 291–295
system management 365
Transaction Processing (TP) 134,

329–331
Transport layer 65, 93, 284–288
Upper Layers 291–365
Virtual Terminal (VT) 365

out-of-sequence PDU 89
output 22

P

p1 protocol, in MOTIS 334
p2 protocol, in MOTIS 337
packing 72
PAR protocol 79, 80
parallel composition 8, 10, 16, 18, 22, 33, 39
partitioned addressing structure 208, 209,

219
password 186
past 29
path 215
path, in network 215
PCI 72
PDU 72, 113
PDU encoding

ad hoc 241
Matched tag 242
simple binary 241–244
TLV 241, 244–251

PDU lifetime 83
peer change of state 62
peer entity 71
piping 34, 47
PKCS 156
PKCS #1 270
plaintext 156
point-to-point communication 60
point-to-point service 101
polarised control, in OSI TP 329
polling 77, 80, 104

protocol 78, 80
polynomial block code 74–76
port

dynamically allocated 213
Internet 212
registered 213

398 Index

TCP 213
UDP 213

positive acknowledgment 76
positive acknowledgment and retransmission

80
post-recording event 153
pre-image resistance 165
pre-recording event 152
pre-secret 319
prefix 28
prefixing 10
presentation context 295
primitive encoding 248
primitive polynomial 75
prioritisation 116
priority 333
Private Network (PN) 211
probabilistic clock synchronisation 145
probe 223, 334
process 3, 7–27, 46

composition of 7
process algebra 3, 13
process alphabet 21
process equation 9
process expression 9, 21, 29
process network 20, 21
process server 198
process state 23
process synchronisation 8, 20, 22
proof

authentication 175–181
backward 54
forward 54
protocol correctness 50–55

protected channel 186
protocol 1, 2, 46–54, 71

ACK/NACK 76
ACK/NACK with timeout 78, 79
alternating bit 80, 82, 91
Byzantine generals 137, 139
classical TDM 105
contention 106
CSMA/CD 107
Diffie-Hellman 184
dynamic window 93
election 128
exploratory routing 227
fair splitting 111
fault-tolerant broadcast 124
flooding 217
handshake 94, 95
interactive convergence 147
key agreement 184, 185
multiplexing 104

PAR 79, 80
polling 77, 78
public key authentication 174
reliable broadcast 124
S-HTTP 355
secret key authentication 171, 172
secret key verification 168
splitting 110
Station-to-Station 185
stop-and-wait 2, 87, 91
three-phase commit 133
three-way handshake 98
TLS Record 317
two-phase commit 130, 131
two-way exchange 94, 95
window 88, 91, 93

protocol control information (PCI) 72
protocol data unit (PDU) 72
protocol encoding 241
protocol entity 46
protocol, asynchronous 244
protocol, stateless 328, 352
protocol, synchronous 244
provider abort 59
provider-supported transaction 330
proxy

object 310
transparent 347
web 347, 352

public key cryptosystem (PKCS) 156,
160–164, 173–175

Purge frame 129
push-down automaton 2

Q

QOS 217, 311
quality of service (QOS) 217, 284, 311
query 340
queuing model 218
quiet time 85

R

randomised sequence numbers 86
RCC 220
real time clock 144–146
realm 350
reassembly 112
receive window 88, 89, 92
recombination 110
recovery 301
redirection of messages 334
Reference model

Index 399

OSI 3, 64–66
referral 204

direct 201
refusal 36, 37
refusal set 36
re f usals 36
regime 323
registered port 213
registry 307, 361
remote object 310
Remote Object Invocation (ROI) 309
remote procedure call (RPC) 97, 299
renaming 11, 20, 22, 33, 39
replay attack 164
replicated directory 201
Request for Comments (RFC) 374
request primitive 94
resegmentation 114, 281
reset 58
residual error 57
residual error rate (RER) 57, 284
resolver 204
resource 340
responding entity 95
response primitive 95
restricted buffer sharing 231
restriction 11, 28
resynchronisation 292
retransmission 80, 83, 90
retransmission delay 109
revalidation 349
reverse certificate 183
RFC 374
ρ-bounded drift 144
Rijndael 160
RIPEMD-160 165
route 192
routing 191, 208, 215–229, 335

adaptive 216, 219, 221, 223
Bellman-Ford 223
centralised 216, 219–221
centralised adaptive 220
directory 217
distance vector 223–224
distributed 216, 223–225
exploratory 226–229
interior gateway 225
isolated 216, 221–222
link state 223–225
non-adaptive 216, 217
source 226–229, 281
static 217–218
tree 218–219
wormhole 238

routing algorithm 84
routing control 186
routing control centre (RCC) 220
routing table 217
routing, non-adaptive 216
RPC 97, 299, 304–309

asynchronous 307–309
call semantics 304
idempotent 305
marshalling 305
stub 305

RSA cryptosystem 161–164

S

S/MIME
encoding 255–257
type 255

SADT 303
safety property 26, 36
SAP 46, 72, 94, 208
satellite communication 87, 118
scheme 340
SDH 244
SDH pointer 244
SDU 57, 72, 113
SDU size, maximum 116
secret key cryptosystem (SKCS) 156–160,

171–173, 179
Secure Hash Algorithm (SHA) 165, 169,

256
Secure HTTP 355
secure service 63
Secure Socket Layer (SSL) 316
security 63, 155–189
security association (SA) 282
security token 316
segmentation 72, 112, 281
selective reject 92
selective repeat 92
selector 208
self-clocking system 233
semantic transparency 346
semantics

channel history 26–35, 50
failure 35–40

send window 88, 90, 92
sequence control 73
sequence number 73, 79, 81–83

randomised 86
sequence preservation 56, 63, 73
serialisation 301, 329
serialise 310
server 46, 97, 197, 299, 303, 305

400 Index

clock 144
name 197, 198
process 198

server script 343
server-based architecture 197
service 45–69

authenticated 64
availability 64
block oriented 56, 72
broadcast 60, 101, 121, 122
confidential 64
confirmed 62, 94, 95, 130
connection-mode 59, 60, 100
connectionless-mode 59, 60, 100
datagram 59
full duplex 62, 101
half duplex 62, 101
integrity of 64
inverse broadcast 60
message oriented 56
multi-peer 60, 101, 130
multicast 60, 121
non-repudiating 64
point-to-point 60, 101
secure 63
simplex 62, 101
stream oriented 56, 72, 287
value-added 48
virtual circuit 59

service access point (SAP) 46, 72, 94, 208
service class 324
service data unit (SDU) 57, 72, 113
service degradation 230
service denial 230
service features 55
service mode 60
service primitive 94, 95

confirm 95
indication 95
request 94
response 95

service reset 58
service user 46, 72
shared control, in OSI TP 329
signature verification

secret key 168
signature, unforgeable 138
signed messages 138, 139
simple binary encoding of PDUs 241–244
Simple Object Access Protocol (SOAP)

311–316, 357
simple type 246, 247
simplex communication 62, 101
slave 130

slow-start 233
smart card 186
SMTP 67, 337

body 338
extensions 252, 338
header 338

SOAP 311
array 312
body 311, 314
envelope 311
fault code 314
faultcode 315
header 311, 313, 316
header block 311

mandatory 314
message 311
node 311, 316
request 357
response 357
role 311, 316
security token 316
struct 312

source quench message 236
source routing 226–229, 239, 281
spanning tree 200
specific identifier 194
specification 29, 37, 48
splitting 110
spurious message fault 57
Standard Generalized Markup Language

(SGML) 257
state

abort 133
commit 133

stateless protocol 328, 352
static group 61
static routing 217–218
statistical multiplexer 104
statistical multiplexing 106
STOP 9, 14, 16, 18, 22, 30, 36, 38
stop-and-wait protocol 2, 87, 91
stream oriented service 56, 72, 287
Stream-oriented Communication 310
strict function 28
striping 110

fair load sharing 110
random selection 110
Round Robin (RR) 110
shortest queue first 111
Surplus Round Robin (SRR) 111

strong Byzantine agreement 135–140
structured type 247
stub 305, 310
sub-directory 200

Index 401

sub-domain address 208
sub-layer 65
sub-network 66, 113, 199, 209
subordinate 302, 329
substitution cipher 157
succ 82
superior 302, 329
symmetric encipherment 156
synchronisation 33, 39
synchronisation point 62, 96, 129

major 292
minor 292

synchronisation, in OSI TP 329
synchronised communication 45
Synchronous Digital Hierarchy (SDH) 244
synchronous protocol 244
synchronous system 104
syndrome 74
system crash 83
system management 365
system-specific view of system 194

T

tagged type 246
TCP 67, 94, 99, 233, 236, 287

timers 287
TDM 102, 103, 244
TELNET 67
three-phase commit 133
three-way handshake 98, 99
throughput 110
time-division multiplexing 102
time-sequence diagram 95
timeout 78, 80, 82, 92, 119, 232
timer 42, 90

inactivity 285
ISO TP4 285
PDU lifetime 285, 287
persistence 285, 287
retransmission 285, 287
TCP 287
time-wait 287
user timeout 287
window 285

timer process 119
timestamp 84, 222, 320
title 208
TLS 316

Alert protocol 319
Change Cipher Spec protocol 319
CipherSuite 318
Handshake protocol 318
master secret 319

Record protocol 317
TLV encoding of PDUs 241, 244–251
token 102, 119, 232, 279, 293
token bus 63, 129, 279
token ring 63, 119, 129, 228, 279
trace 3, 14, 26, 37

empty 27
trace operations 27, 28
trace prefix 28
trace restriction 28
traces 27, 36
trader 198, 307
traffic padding 186
traffic pattern 218, 220
transaction 129

application-supported 330, 331
chained 331
nested 309
provider-supported 330, 331
unchained 331

Transaction Processing (TP) 329–331
transaction tree 330
transceiver 105
transfer syntax 295, 296
transition 27
transparent bridging 222
transparent view of system 194
Transport Layer Security (TLS) 316, 355
transport mode 283
transposition cipher 157
trapdoor one-way function 161
tree routing 218–219
Triple DES (3DES) encryption 159, 256
trust model 182

rooted chain 182
strict hierarchical 182
with reverse certificates 183

tunnel 347
tunnel mode 283
two-phase commit 130
two-phase commit protocol 201
two-way exchange protocol 94, 95
type

serialisable 310
simple 246, 247
structured 247
tagged 246

Type-Length-Value encoding 244–251
typed data 293

U

U.S. Department of Defense (DoD) 281,
287, 326

402 Index

UDDI 361–363
API set 361
business 361
tModel 363

UDP 67
unbounded buffer 42
Unicode encoding 258
Uniform Resource Identifier (URI) 340–341
unique local identifier 192
Universal Description, Discovery and

Integration (UDDI) 361–363
Universal Unique Identifier (UUID) 202,

362
universe of discourse 295, 296
unsigned messages 136
urgent data 287
URI 259, 260, 310, 340–341

fragment 340
path 340
query 340
scheme 340

User Agent (UA) 332
UUID 202, 362

V

value-added service 48
VC 59
VDM 10
vector clock 143
vending machine 11
verification, of digital signature 168
VFS 322, 323
virtual circuit service 59
Virtual File Store (VFS) 322, 323
virtual terminal 66, 365

W

W3C 375
wait-for graph 319
weak Byzantine agreement 140
Web resource 340
Web service 356–364

publication 361
registry 361

Web service architecture 363, 364
Web Service Description Language (WSDL)

358–361
wide area network 199
window

congestion 233
receive 88, 89, 92

send 88, 90, 92
window protocol 88, 91
World Wide Web 340–356
WSDL 358–361

binding element 359, 361
interface element 359
MEP 359
operation element 359
service element 359

X

X.25 58, 280
X.121 209
X.400 214
X.500 182, 194, 214, 365
X.509 183, 318, 355

extension 182
XDR encoding 328
XML

atomic type 263
attribute 259, 260
C14N canonicalisation 270
canonicalisation 270
complex type 263, 268
content model 268
derived type 265
digital signature 270
document 258, 311
element 258–259
encoding 251, 257–270
encryption 269
end tag 259
list type 263
name 259–260
namespace 259–260, 263, 312, 359
namespace prefix 259
primitive type 263
restriction 265, 266
Schema 260, 262–263, 265, 311
schema language 260
simple type 263–267
start tag 259
tag 259
type 263–268
type facet 265
union type 263
ur-type 313

Z

zone transfer 205

